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Abstract: For a reaction-diffusion equation with unknown right-hand side and non-local measure-
ments subject to unknown constant measurement delay, we consider the nonlinear inverse problem of
estimating the associated leading eigenvalues and measurement delay from a finite number of noisy
measurements. We propose a reconstruction criterion and, for small enough noise intensity, prove
existence and uniqueness of the desired approximation and derive closed-form expressions for the first-
order condition numbers, as well as bounds for their asymptotic behavior in a regime when the number
of measurements tends to infinity and the inter-sampling interval length is fixed. We perform numerical
simulations indicating that the exponential fitting algorithm ESPRIT is first-order optimal, namely, its
first-order condition numbers have the same asymptotic behavior as the analytic ones in this regime.
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1. INTRODUCTION

Reaction-diffusion equations (RDEs) are widely used to model
phenomena in physics and engineering, including magne-
tized plasma, flame front propagation and chemical processes
(Sivashinsky 1977; Nicolaenko 1986). RDEs belong to the
class of distributed parameters systems, and their control and
observation have been extensively investigated over the last
decades, see e.g. Balas (1988); Harkort and Deutscher (2011);
Katz and Fridman (2022). In particular, observation and control
of RDEs through modal decomposition was employed e.g. by
Christofides (2001); Curtain (1982); Katz and Fridman (2021a).
Almost all existing control and observation techniques assume
explicit knowledge of the spatial operator of the system or of
the eigenvalue/eigenfunction pairs corresponding to its modes.

Identification of unknown parameters in RDEs is a challeng-
ing problem, mostly studied in an adaptive estimation frame-
work (Demetriou and Rosen 1994; Banks and Kunisch 2012).
Adaptive estimation relies on a persistency of excitation as-
sumption, which may be difficult to verify in practice. It also
requires continuous-time measurements of the state and has not
been generalized so far to a sampled-data framework and/or
to estimation from a finite number of measurements. Finally,
translation of these theoretical methods into tractable and effi-
cient algorithms is, to the best of our knowledge, still an open
problem. Other identification methods, accompanied by sound
numerical algorithms, have been derived in the field of inverse
problems (Lowe et al. 1992; Rundell and Sacks 1992; Kirsch
2011). These approaches treat the problem of recovering the
spatial operator of the system under the assumption of complete
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knowledge of its eigenvalues. However, this assumption is non-
realistic from a control theory perspective, since often only
discrete-time measurements of the state are available. Hence,
constructive and implementable data-driven identification tech-
niques for reaction-diffusion equations are still missing.

In this work, we consider a 1D reaction-diffusion equation with
unknown right-hand side and non-local measurements subject
to an unknown, but upper bounded, constant measurement
delay. Our goal is to estimate the delay and a finite number
of dominant modes, corresponding to the RDE right-hand side.
Our main contributions are the following:

(1) Differently from existing adaptive estimation methods,
which require measurements of the form y(t), t ≥ 0, or
{y(sk)}∞

k=1 with limk→∞ sk = ∞ and inter-sampling periods of
sufficiently small length, we assume that measurements are
taken at finitely many uniformly distributed time steps with
arbitrary inter-sampling period length. Moreover, the measure-
ments contain structured noise, with intensity ε > 0, which
emanates from measuring ‘undesirable’ system modes.

(2) We reformulate the identification task in the framework
of exponential fitting, a central topic in data analysis (Istratov
and Vyvenko 1999; Pereyra and Scherer 2010; Batenkov et al.
2021). We define a reconstruction criterion, and prove existence
and uniqueness of the associated approximation, if the intensity
ε of the structured noise is not too large (Theorem 1).

(3) For the exponential fitting problem, we introduce first-order
condition numbers (Theorem 1), which describe how the ε-
noise is amplified in the reconstruction errors, and provide
explicit expressions for them and for their asymptotic behavior
in a specific parameter regime (see (21) and Theorem 2).

(4) We numerically compute the approximations via the ES-
PRIT algorithm (Roy and Kailath 1989) and show that it
achieves first-order optimality, meaning that its first-order con-



dition numbers exhibit the same asymptotic behaviour as the
analytic ones, in the considered regime.

2. MODEL AND PRELIMINARIES

We consider the 1D reaction-diffusion equation
zt(x, t) = (p(x)zx(x, t))x +q(x)z(x, t), (1)

with x ∈ (0,1), z(x, t) ∈ R and z(0, t) = z(1, t) = 0, subject to
non-local measurements

y(t) =
∫ 1

0
c(x)z(x, t −D)dx ∈ R, t ≥ 0, (2)

where c ∈ L2(0,1) is partially known and belongs to a certain
class of kernels (see Assumption 1 in Section 3). The unknown
smooth functions p,q : [0,1]→ R satisfy the bounds

0 < p ≤ p(x)≤ p < ∞, q ≤ q(x)≤ q, x ∈ [0,1], (3)
where the constants p,q, p,q do not need to be known. The
unknown constant delay D > 0 satisfies D < Dmax, with a
known upper bound Dmax. The initial condition z(·,0) is known
and belongs to a class of admissible initial conditions (see
Assumption 2 in Section 3); we set z(·, t) = z(·,0), t < 0.

We denote by H 2(0,1) (resp. H 1
0 (0,1)) the Sobolev space

of functions f defined on [0,1] that are twice (resp. once)
weakly differentiable with f ′′ ∈ L2(0,1) (resp. f ′ ∈ L2(0,1) and
f (0) = f (1) = 0). Define the operator A

[A h] (x) =−
(

p(x)h′(x)
)′−q(x)h(x), x ∈ (0,1),

Dom(A ) =
{

h ∈ H 2(0,1) ; h(0) = h(1) = 0
}
.

System (1) is well posed (Katz and Fridman 2021b). Given
z(·,0) ∈ L2(0,1), the unique solution z ∈C([0,∞),H 1

0 (0,1))∩
C1((0,∞),H 1

0 (0,1)) is such that z(·, t)∈Dom(A ) for all t > 0.

The operator A has an infinite monotone sequence of simple
eigenvalues {λn}∞

n=1 satisfying limn→∞ λn = ∞ (Orlov 2017).
The eigenvectors {ψn}∞

n=1 form a complete orthonormal system
in L2(0,1). Also, the following inequality holds (Orlov 2017)

π
2n2 p+q ≤ λn ≤ π

2n2 p+q, n ∈ N. (4)
We denote [n] = {i ∈ N ; 1 ≤ i ≤ n}. The next proposition esti-
mates the differences between pairs of eigenvalues {λn}∞

n=1 and
will be essential in deriving asymptotic rates for the condition
numbers (see Lemma 1).
Proposition 1. There exist constants υ ,ϒ > 0 such that

υ
(
m2 −n2)≤ λm −λn ≤ ϒ

(
m2 −n2) (5)

holds for every choice of 1 ≤ n < m. ⋄

Proof. First, we show that there exists some constant A0 ∈ N
such that

υ0
(
m2 −n2)≤ λm −λn ≤ ϒ0

(
m2 −n2) , m > n ≥ A0, (6)

for some 0 < υ0 < ϒ0. Indeed, by (Fulton and Pruess, 1994,
Equation 4.21), the eigenvalues {λn}∞

n=1 have the asymptotic

behavior λn =
π2

B2 n2 + a0 +O
(

1
n2

)
, n ≥ 1, where B and a0 are

positive constants. Taking the difference, we have

λm −λn =
π2

B2

(
m2 −n2)+O

(
1
n2

)
+O

(
1

m2

)
.

Let m > n ≥ A, for a generic A ∈ N. Since limA→∞ O
(

1
n2

)
+

O
(

1
m2

)
= 0, there exists some A0 ∈N such that, for m> n≥A0,

− π2

2B2 < O
(

1
n2

)
+O

(
1

m2

)
< 1.

Then, for this A0 we have that any m > n ≥ A0 satisfy
π2

2B2

(
m2 −n2)≤ λm −λn ≤

(
π2

B2 +1
)(

m2 −n2) .
Choosing υ0 =

π2

2B2 and ϒ0 =
π2

B2 +1, we obtain (6).

Next, consider m,n∈ [A0−1]. Since [A0−1] is a finite set, there
exist some υ1 < υ0 and ϒ0 < ϒ1 such that
υ1
(
m2 −n2)≤ λm−λn ≤ ϒ1

(
m2 −n2) , n < m ≤ A0−1. (7)

In particular, (6) continues to hold with υ0,ϒ0 replaced by
υ1,ϒ1, respectively. To finish the proof, we now show that there
exist υ < υ1 and ϒ1 < ϒ such that
υ
(
m2 −n2)≤ λm−λn ≤ ϒ

(
m2 −n2) , n ≤ A0−1, m ≥ A0. (8)

Assume υ cannot be found such that the lower bound in (8)
holds. Then, setting υq = 2−q, q ∈ N, there exist nq ≤ A0 −
1, mq ≥ A0 such that

2−q >
λmq −λnq

m2
q −n2

q

(4)
≥

π2
(

pm2
q − pA2

0
)
+q−q

m2
q −1

.

Taking q → ∞, which implies mq → ∞, we have 0 ≥ π2 p > 0,
which is a contradiction. Similar arguments hold for ϒ. ■

3. PROBLEM STATEMENT AND ASSUMPTIONS

Employing modal decomposition (Katz and Fridman 2021a),
we present the solution to system (1) as

z(x, t) =
∞

∑
n=1

zn(t)ψn(x), zn(t) = ⟨z(·, t),ψn⟩ , n ∈ N. (9)

Differentiating under the integral sign and integrating by parts,
we have żn(t) =−λnzn(t) =⇒ zn(t) = e−λntzn(0) for all n ∈ N,
whence

z(x, t) =
∞

∑
n=1

zn(0)e−λnt
ψn(x). (10)

Substituting (10) into (2), for t ≥ Dmax we obtain

y(t) =
∞

∑
n=1

cnzn(0)eλnDe−λnt , cn = ⟨c,ψn⟩ , n ∈ N. (11)

Before formally stating our identification objective, we state our
main assumptions on the system (1) and the measurements (2).
There exist N1,N2 ∈ N such that the following properties hold.
Assumption 1. The measurement kernel c ∈ L2(0,1) belongs to
the class of kernels whose coefficients {cn}∞

n=1 satisfy

(a) cn = 0 for all n > N1 +N2,
(b) cn are known and nonzero for n ∈ [N1],
(c) ck = ε c̃k for all k ∈ [N1+N2]\ [N1], where for some Mc > 0

|c̃k| ≤ Mc|cn| for all n ∈ [N1] and all k ∈ [N1 +N2]\ [N1]. ⋄

Assumptions 1(a) and 1(b) mean that c ∈ L2(0,1) is a ban-
dlimited measurement kernel, supported on {ψn}N1+N2

n=1 , with
known and nonzero projection coefficients on {ψn}N1

n=1. In ad-
dition, Assumption 1(c) means that the projection coefficients
on {ψn}N2

n=N1+1 are “small” in comparison to those on {ψn}N1
n=1.

In signal processing terms, this means that the measurement
kernel c (whose eigenstructure is shown in Figure 1) has a main
lobe on the frequency domain {λn}N1

n=1 as well as an undesir-
able ε-small side lobe on the frequency domain {λn}N2

n=N1+1,
which is associated with structured noise in the measurements.



Fig. 1. Eigenstructure of the kernel c ∈ L2(0,1).

Assumption 2. The initial condition z(·,0) ∈ L2(0,1), zn(0) ̸=
0, is known for n ∈ [N1]. Furthermore, |zk(0)|

|zn(0)| ≤ Mz for some
Mz > 0, n ∈ [N1] and k ∈ [N1 +N2]\ [N1]. ⋄
Assumption 3. The system measurements are taken only at
times {tk := k∆+Dmax}2N1−1

k=0 , with step-size ∆ > 0. ⋄

Assumption 3 implies that we only have finitely many “snap-
shots” of the system output.

Subject to Assumptions 1-3, the measurements (11) at the
available times {tk}2N1−1

k=0 can be presented as

y(tk) =
N1

∑
n=1

yne−λnk∆

︸ ︷︷ ︸
ymain(tk)

+ ε

N1+N2

∑
n=N1+1

yne−λnk∆

︸ ︷︷ ︸
ytail(tk)

, (12)

for k = 0, . . . ,2N1 −1, where

yn :=

{
cnzn(0)eλn(D−Dmax), n ∈ [N1]

c̃nzn(0)eλn(D−Dmax), n ∈ [N1 +N2]\ [N1]
(13)

satisfy |yk|
|yn| ≤ McMz =: My for all n ∈ [N1],k ∈ [N1 +N2]\ [N1],

since e(λk−λn)(D−Dmax) < 1 for such indices, as D < Dmax.

Identification objective: Given the measurements (12) and
N0 ∈ [N1], estimate the eigenvalues {λn}N0

n=1 and the constant
delay D.

The problem of recovering {yn,λn}N1
n=1 from the measurements

(12) is known as exponential fitting (Pereyra and Scherer 2010).
The components {ytail(tk)}2N1−1

k=0 in the measurements consti-
tute an “ε-structured” measurement noise, emanating from the
fact that c is not a perfect filter (i.e., c /∈ span{ψn}N0

n=1). For
ε = 0, there exist multiple methods which recover {yn,λn}N1

n=1
exactly; see the discussion of the ESPRIT algorithm (Roy and
Kailath 1989) in Section 5. However, if ε > 0, the structured
measurement noise introduces errors into the estimation. To the
best of our knowledge, error estimates for exponential fitting in
the presence of small structured noise do not exist currently
in the literature (except in some very special cases such as
Batenkov et al. 2021). The goal of this work is to study the
analytic estimation errors due to noise, to first order in ε , and
to show that the ESPRIT algorithm is first-order optimal in
achieving the identification objective, thereby gaining insight
into the system (1).

The considered problem is highly challenging for two rea-
sons. First, we assume that only finitely many measurements
are available for the reconstruction procedure, for any triplet
(∆,N1,N2). Second, although (1) is a linear system, the task of
recovering {D,λn}N0

n=1 from the measurements (12) is a nonlin-
ear inverse problem, as the measurements depend nonlinearly
on these parameters.

4. IDENTIFICATION CRITERION AND ITS ANALYSIS

Given (12), we introduce the map

F

({
ŷn, λ̂n

}N1

n=1
;ε

)
= col

{
N1

∑
n=1

ŷne−λ̂nk∆ − y(tk)

}2N1−1

k=0

. (14)

Given an approximation candidate P̂ :=
{

ŷn, λ̂n

}N1

n=1
, the func-

tion F (P̂;ε) returns the discrepancy between measurements

{y(tk)}2N1−1
k=0 and “virtual measurements”

{
∑

N1
n=1 ŷne−λ̂nk∆

}2N1−1

k=0
.

In particular, if ε = 0 (i.e., there is no structured noise in the
measurements), we see that F

(
{yn,λn}N1

n=1 ;0
)
= 0. As an

identification criterion, we look for estimates P̂ that maintain
the equality F (P̂;ε) = 0 even in the presence of noise ε > 0.
Definition 1. We say that P̂ is an ε-approximation of {yn,λn}
if F

(
P̂;ε
)
= 0. To avoid ambiguity, we always assume that the

elements of P̂ are sorted in increasing order of eigenvalues, i.e.
λ̂k < λ̂k+1 for all k. ⋄

Given an ε-approximation P̂, one can generate

D̂(n) = λ̂
−1
n log

(
ŷn

cnzn(0)e−λ̂nDmax

)
⇐⇒ n∈

{
m ∈ [N1] ;

ŷm

cmzm(0)
> 0
}
=: YD

provided YD ̸= /0 (see Section 5). In that case, we propose to
use D̂(n) to approximate D, where n = minYD.
Remark 1. In (13) λn and yn, n ∈ [N1], are not independent.
However, in (14) we search for a candidate P̂, where λ̂n and ŷn,
n ∈ [N1], are treated as independent. This approach may lead
to a loss of structure, but it has the key advantage of yielding a
well-posed inverse problem (see Theorem 1) for whose solution
tractable numerical algorithms exist (see Section 5). ⋄

In the following analysis, only to keep the presentation simpler,
we assume that N2 = 1: the sum ytail(tk), k ∈ {0}∪ [2N1 − 1],
in (12) contains a single term. Our analysis and conclusions
remain identical for an arbitrary fixed N2 ∈ N.
Hereafter, we use the notation

φn := e−λn∆, φ̂n = e−λ̂n∆, n ∈ [N1 +1]. (15)
The measurements in (12) are then rewritten as

y(tk) =
N1

∑
n=1

ynφ
k
n + ε yN1+1 φ

k
N1+1, k ∈ {0}∪ [2N1 −1]. (16)

To show that our criterion is well defined, we prove the exis-
tence and uniqueness of an ε-approximation, for small ε > 0.
Theorem 1. There exist ε∗ > 0 and unique continuously dif-
ferentiable functions P̂(ε) :=

{
ŷn(ε), λ̂n(ε)

}
such that P̂(0) =

{yn,λn}N1
n=1 and for all |ε|< ε∗, F (P̂;ε) = 0 ⇐⇒ P̂ = P̂(ε).

Furthermore, the components of P̂(ε) are continuously differ-
entiable on |ε|< ε∗ and satisfy as ε → 0

λ̂n(ε)−λn = Kλ (n;N1,∆)ε +on,N1,∆(ε),
ŷn(ε)− yn = Ky(n;N1,∆)ε +on,N1,∆(ε),

(17)

for[
Ky(n;N1,∆)
Kλ (n;N1,∆)

]
= yN1+1

 HΦ,n(φN1+1)

− 1
∆ynφn

H̃Φ,n(φN1+1)

 , n ∈ [N1].

(18)
Here

{
HΦ,n, H̃Φ,n

}N1
n=1 are the Hermite interpolation basis poly-

nomials, given in (A.2), associated with Φ = {φn}N1
n=1. ⋄



The terms Ky(n;N1,∆) and Kλ (n;N1,∆), n ∈ [N1] are the first
order (in ε) condition numbers of the problem. Henceforth, we
will suppress their dependence on N1,∆ for brevity.

Proof. F (P̂,ε) is differentiable in all variables (P̂,ε). We
denote by ∂P̂F (P,0) its Jacobian with respect to P̂ evaluated
at P̂ = {yn,λn}N1

n=1 =: P and ε = 0. A direct computation yields

∂ŷ j F (P,0) = col
{

e−λnk∆

}2N1−1

k=0
= col

{
φ

k
j

}2N1−1

k=0
,

∂
λ̂ j

F (P,0) = col
{
−k∆y je−λ jk∆

}2N1−1

k=0
= col

{
−k∆y jφ

k
j

}2N1−1

k=0
.

Thus ∂P̂F (P,0) = J(P,0)D(P,0), with

J(P,0) =W⊤
Φ , D(P,0) = diag

{[
1 0
0 −∆ynφn

]}N1

n=1
, (19)

where WΦ, which is associated with Φ, is given in (A.3).

Since the eigenvalues {λn}∞

n=1 are simple, it follows from
the uniqueness of Hermite interpolation that W⊤

Φ
is invertible

and W−⊤
Φ

= HN1 (Φ). In view of Assumptions 1-2 and of
(13), we have that yn ̸= 0, n ∈ [N1], whereas φn ̸= 0, n ∈
[N1], by definition. Therefore, det(∂P̂F (P,0)) ̸= 0. The implicit
function theorem (Spivak 2018) guarantees that there exist
ε∗ > 0 and unique continuously differentiable functions P̂(ε)
such that P̂(0) = P and F (P̂;ε) = 0 ⇐⇒ P̂ = P̂(ε) for all
|ε| < ε∗. Differentiating F (P̂(ε),ε) = 0 with respect to ε and
substituting ε = 0, we obtain

col
{[

Ky(n)
Kλ (n)

]}N1

n=1
= ∂P̂F (P,0)−1yN1+1 col

{
φ

k
N1+1

}2N1−1

k=0

= diag
{[ yN1+1 0

0 −
yN1+1
∆ynφn

]}N1

n=1
HN1 (Φ)col

{
φ

k
N1+1

}2N1−1

k=0
.

(20)

Since (A.4) holds, we obtain the expression in (18). ■

Equation (17) in Theorem 1 implies that a small ε-perturbation
in the measurements is amplified in the reconstruction errors

eλ (n)
ε

:=
λ̂n(ε)−λn

ε
= Kλ (n)+on,N1,∆(1),

ey(n)
ε

:=
ŷn(ε)− yn

ε
= Ky(n)+on,N1,∆(1)

by the condition numbers Ky(n) and Kλ (n), when seeking for
the ε-approximation P̂.

We now consider the asymptotic analysis of the condition
numbers Ky(n) and Kλ (n), of which we wish to determine
the dependence on N1 and ∆, so as to better understand the
reconstruction errors using the proposed criterion. There are
many regimes that relate N1 and ∆, which might be of interest.
In this work we focus on

Regime: ∆ fixed and N1 → ∞ (21)
corresponding to growing support of the measurement kernel
c ∈ L2(0,1) in the frequency domain, subject to Assumption 1.

Recall the Hermite interpolation polynomials in (18); see also
the Appendix. Given ∆ > 0, N1 ∈ N and n ∈ [N1], let

ξ1 = ∏
j ̸=n

(φN1+1 −φ j)
2, ξ2 =

n−1

∏
j=1

(φn −φ j)
2,

ξ3 =
N1

∏
j=n+1

(φn −φ j)
2, ξ4 = ∑

k ̸=n
|φn −φk|−1,

(22)

where all summations/products range over indices in [N1],
and we use the convention that ∏

k
j=l b j = 1 and ∑

k
j=l b j = 0

whenever k < l. We omit the dependence of functions on
(n,N1,∆) for simplicity of notation.

Remark 2. Recalling the Lagrange polynomials given in (A.1)
we observe that L2

Φ,n(φN1+1) =
ξ1

ξ2ξ3
and

∣∣∣L′
Φ,n(φn)

∣∣∣= ξ4. ⋄

To prove our main result on the asymptotic behavior of the
condition numbers, we need several lemmas. In the next, we
employ the notations in Proposition 2 in the Appendix.
Lemma 1. The functions in (22) can be written as

ξ1 = e−2∆∑ j ̸=n λ j−2θ1 , ξ2 = e−2∆∑
n−1
j=1 λ j−2θ2 , n > 1,

ξ3 = e−2∆(N1−n)λn−2θ3 , n < N1,

where
θ1 := ∑

j ̸=n
− log

(
1− e−∆(λN1+1−λ j)

)
> 0,

θ2 :=
n−1

∑
j=1

− log
(

1− e−∆(λn−λ j)
)
> 0, n > 1,

θ3 :=
N1

∑
j=n+1

− log
(

1− e−∆(λ j−λn)
)
> 0, n < N1

(23)

satisfy the inequalities

θ1 ≤ J0,∞(∆υN1)+ log
(

1− e−∆υ(N1+1−n)(N1+1)
)
,

θ1 ≥ J1,2(∆ϒ(2N1 +1))+ log
(

1− e−∆ϒ(N1+1−n)(2N1+1)
)
,

J1,2(∆ϒ(2n−1))≤ θ2 ≤ J0,∞(∆υ(n+1)),
J1,2(∆ϒ(N1 +n+1))≤ θ3 ≤ J0,∞(∆υ(2n+1)),

(24)

where the positive constants υ and ϒ are those given in
Proposition 1 and the function Jw1,w2 is given in (B.1). ⋄

Proof. We consider ξ1 only. The results for ξ2 and ξ3 are
proved similarly. We have

log(ξ1) =−2∆ ∑
j ̸=n

λ j −2θ1,

with θ1 given in (23). Employing (5) in (23), we obtain

θ1 ≥ ∑
j ̸=n

− log
(

1− e−∆ϒ((N1+1)2− j2)
)
.

Let ℓ := log
(

1− e−∆ϒ(N1+1−n)(2N1+1)
)

. Then, we have

∑
j ̸=n

− log
(

1− e−∆ϒ((N1+1)2− j2)
)
− ℓ≥

N1

∑
j=1

− log
(

1− e−∆ϒ j(2N1+1)
)

≥
∫ N1+1

1
Q∆ϒ(2N1+1)(x)dx = J1,N1+1(∆ϒ(2N1 +1))≥ J1,2(∆ϒ(2N1 +1)).

The first inequality holds as (N1 + 1)2 − j2 ≤ (N1 + 1− j)(2N1 + 1),
while the second one holds because the sum in the second row
can be viewed as Riemannian sum of the positive and mono-
tonically decreasing function Q∆ϒ(2N1+1)(x) over x ∈ [1,N1].
Hence, the integral provides a lower bound for the sum. The
upper bound is proved analogously, using (N1 + 1− j)(N1 + 1) ≤
(N1 +1)2 − j2, θ1 ≤ ∑ j ̸=n − log

(
1− e−∆υ((N1+1)2− j2)

)
and

∑
j ̸=n

− log
(

1− e−∆υ((N1+1)2− j2)
)

≤
∫ N1

0
Q∆υ(N1+1)(x)dx+ log

(
1− e−∆υ(N1+1−n)(N1+1)

)
≤ J0,∞(∆υ(N1 +1))+ log

(
1− e−∆υ(N1+1−n)(N1+1)

)
. ■

Next, recall the Lagrange polynomials {LΦ,n}n∈[N1]
as in (A.1),

where Φ = {φn}N1
n=1.

Lemma 2. For n ∈ [N1], we have

L2
Φ,n(φN1+1) =

{
e−2∆∑

N1
j=n+1(λ j−λn)+Θ, n < N1,

e2θ2−2θ1 , n = N1,
(25)

where

Θ =

{
−2(θ1 −θ2 −θ3) , n > 1,
−2(θ1 −θ3) , n = 1.

(26)



Moreover, fixing n ∈ [N1 −1], ∆ > 0 and denoting

σ
N1
n :=

N1(N1 +1)(2N1 +1)
6

− n(n+1)(2n+1)
6

− (N1 −n)n2,

there exists a constant Mφ = Mφ (∆)> 0 such that

L2
Φ,n(φN1+1)≤ Mφ e−2∆σ

N1
n = Mφ e−

2∆υN3
1

3 (1+On(N−2
1 )). ⋄ (27)

Proof. The equality (25) follows from Lemma 1 and the fact
that L2

Φ,n(φN1+1) =
ξ1

ξ2·ξ3
.

Fix n ∈ [N1 −1] and consider (25). By Proposition 1,

−2∆

N1

∑
j=n+1

(λ j −λn)
(5)
≤ −2∆υσ

N1
n =−

2∆υN3
1

3
(
1+On

(
N−2

1
))

, (28)

as N1 → ∞ (note that On
(
N−2

1

)
is independent of ∆). On the

other hand, consider the lower and upper bounds in (24). In
view of these bounds and Proposition 2, θ1, θ2 and θ3 are
uniformly bounded in N1 ≥ n (recall that ∆ and n are considered
fixed). Hence, Θ in (26) is uniformly bounded for all N1 ∈ N.
Combining the latter with (25) and (28), we obtain (27). ■

Lemma 3. The term ξ4 in (22) satisfies

ξ4 ≤ Mξ

e∆λN1

∆
(29)

for some Mξ > 0 independent of ∆ > 0. ⋄

Proof. We write ξ4 = ξ4,1 +ξ4,2, where

ξ4,1 = ∑
k∈[n−1]

1
|φn −φk|

and ξ4,2 =
N1

∑
k=n+1

1
|φn −φk|

.

For ξ4,1 with n > 1, we have

ξ4,1 ≤
e∆λn

∆

n−1

∑
k=1

1
λn −λk

≤ e∆λn

∆υ

n−1

∑
k=1

1
n2 − k2 ≤ e∆λn

∆υ

ln(2n)
2n

, (30)

where the first inequality follows from the application of La-
grange’s theorem with the derivative computed at λn, the second
follows from (5). The third inequality follows from comparison
with the integral of the positive and monotonically increasing
function x 7→ (n2 − x2)−1 on x ∈ [1,n − 1]. Analogously, for
n < N1 we obtain

ξ4,2 ≤ ∆
−1

N1

∑
k=n+1

e∆λk

λk −λn

(5)
≤ e∆λN1

∆υ

N1

∑
k=n+1

1
k2 −n2 ≤ e∆λN1

∆υ

1+ ln(2n+1)
2n

.

(31)

The result follows from (30), (31) since ln(2n)
2n and 1+ln(2n+1)

2n
are bounded on n ∈ N. ■

We can now establish the asymptotic behaviour of the condition
numbers Kλ (n) and Ky(n) in the regime (21).
Theorem 2. Recall the first-order condition numbers Kλ (n)
and Ky(n) in (17). Let n ∈ N. Given ∆ > 0, there exist some
γy(n,∆)> 0 and γλ (n,∆)> 0 such that, as N1 → ∞,∣∣Ky(n)

∣∣≤ γy(n,∆) · |zN1+1(0)c̃N1+1|e−
2
3 ∆υN3

1(1+O(N−1
1 )),

|Kλ (n)| ≤ γλ (n,∆) · e−
2
3 ∆υN3

1(1+O(N−2
1 )). ⋄

The condition numbers Kλ (n) and Ky(n) determine, to first
order in ε , how much an ε-perturbation in the measurements is
amplified in the ε-approximation P̂; in view of Theorem 2, in
the regime (21) they decay super-exponentially with N1 → ∞.

Proof. For Ky(n), in view of (18) and (A.2), we have∣∣Ky(n)
∣∣ Remark2

≤ |yN1+1|
(

1+2e−∆λn ξ4

)
L2

φ ,n(φN1+1).

Employing (27) and (29),∣∣Ky(n)
∣∣≤ Mφ |yN1+1|

(
∆+2e−∆λnMξ e∆λN1

)
∆
−1e−2∆υσ

N1
n

= Mφ ∆
−1
(

∆e−∆λN1 +2e−∆λnMξ

)
|yN1+1|e

−2∆

[
υσ

N1
n +λN1+1

]
.

Recalling (13), (28) and using the fact that, when N1 → ∞,

υσ
N1
n +λN1+1 (D+1−Dmax) =

2
3

υN3
1
(
1+O(N−1

1 )
)
,

we obtain the bound on Ky(n). Similarly, we have

|Kλ (n)| =
|yN1+1|
∆|yn|

|φN1+1 −φn|
φn

L2
Φ,n (φN1+1) .

By Assumptions 1-3, |yN1+1|
|yn| ≤ My, whereas |φN1+1−φn|

φn
≤ 1.

Hence, from (27), we again have

|Kλ (n)| ≤ MyMφ ∆
−1e−2∆σ

N1
n .

In light of (28), we obtain the bound on Kλ (n). ■

Remark 3. Theorem 2 continues to hold uniformly for n ≤
⌊βN1⌋, β < 1 as N1 → ∞: in this case, σ

N1
n

N3
1

is lower bounded

by a positive constant for all n ≤ ⌊βN1⌋, thereby the super-
exponential decay rate is preserved. ⋄

5. NUMERICAL RESULTS

Our numerical simulations, implemented in Wolfram Math-
ematica, show that the first-order condition numbers of the
ESPRIT algorithm (Roy and Kailath 1989) exhibit the same
asymptotic behaviour as Kλ (n) and Ky(n) in the regime (21).

5.1 Multi-exponential model with structured perturbations

We start by examining the numerical conditioning of the multi-
exponential model (12) with a structured (multi-exponential)
perturbation term. These simulations are aimed at verifying
the behavior of the analytic condition numbers of the multi-
exponential model (12). A complete PDE delay estimation will
be presented in the next subsection. We set λn = n2, yn = 1 for
all n, and fix ∆ = 0.04, N2 = 1. For various values of N1, we
compute the ideal condition numbers Kλ (n) and Ky(n), n ∈
[N1], given by (18). The results are shown in Fig. 2a. Super-
exponential decay is clearly seen, as predicted by Theorem 2.

The ESPRIT algorithm (Roy and Kailath 1989) is one of the
best-performing methods for exponential fitting. It requires at
least 2N1 equispaced samples of the signal y(t) of the form (12),
and produces estimates of the parameters {yn,λn}N1

n=1. It pro-
vides exact solutions when ε = 0, and performs close to optimal
in the presence of noise, in the context of the so-called super-
resolution problem in applied harmonic analysis (Batenkov
et al. 2021). We apply ESPRIT to the sequence {y(tk)}2N1−1

k=0 ,
with the same setup as described above. In Fig. 2b, we see that
the conditioning of the ESPRIT algorithm is consistent with
Theorem 2 and the computed condition numbers in Fig. 2a. We
plot the rescaled errors (recall (17)),

E K λ (n) = ε
−1∣∣λ̂ ESP

n −λn
∣∣, E K y(n) = ε

−1∣∣ŷESP
n − yn

∣∣, (32)

where λ̂ ESP
n and ŷESP

n are the parameter values recovered by
ESPRIT, and, furthermore, the λ̂ ESP

n ’s have been sorted in
increasing order. Here ε = 10−3, and the results were computed
with 100 decimal digits of precision.
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(a) Condition numbers of λ1, y1.
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(b) ESPRIT conditioning.

Fig. 2. Condition numbers and ESPRIT performance.

5.2 PDE delay estimation

We test the complete procedure on a PDE identification prob-
lem. We consider the RDE (1) with constant p ≡ q ≡ 0.1. The
eigenvalues and eigenfunctions are explicitly given by λn =
n2π2 −q and ψn(x) =

√
2sin(nπx). The initial condition is set

to satisfy zn(0) = (−1)n+1
(√

2n3
)−1

. To solve the RDE, we
use the method of lines for space discretization with Nx = 40
collocation points and 32nd order finite difference approxi-
mation to attain high accuracy. The resulting ODE system is
integrated for t ∈ [0,1.5], with the resulting solution and the
initial condition plotted in Fig. 3. Our implementation utilized
the NDSolve library function.

Fig. 3. The RDE initial condition and the solution.

Next, we consider the measurement model (2) with (a-priori
unknown) delay D = 1/12. We fix the sampling step size to
be ∆ = 1/25. We further fix Dmax = 1/10, for each N1 =
1, . . . ,Nmax = 10. First, the measurement function is chosen
with random coefficents cn ∈ [1,2] and ε = 0.01:

c(x) =
N1

∑
n=1

cnψn(x)+ ε

N1+N2

∑
n=N1+1

cnψn(x).

Next, the measurement function (2) is computed by global
adaptive quadrature as implemented in NIntegrate library
function, and sampled at the points tk = Dmax + k∆, for k =

0, . . . ,2N1−1, giving the measurement vector col{y(tk)}2N1−1
k=0 =

N1

∑
n=1

cnzn(0)e−λn(Dmax−D)e−λnk∆ + ε

N1+N2

∑
n=N1+1

cnzn(0)e−λn(Dmax−D)e−λnk∆.

Finally, we apply the ESPRIT algorithm to the measurement
vector col{y(tk)}2N1−1

k=0 and recover {λ̂ ESP
n }N1

n=1 directly. Then,
since cn,zn(0),Dmax are known, we can recover the approxima-
tion to D from the coefficients ŷESP

n as

D ≈ D̂(1)
ESP :=

1

λ̂ ESP
1

log
ŷESP

1

c1z1(0)e−λ̂ ESP
1 Dmax

.

Whenever the argument of the logarithm is negative, we con-
sider the reconstruction to be unsuccessful.

The errors |λ̂ ESP
1 −λ1| and |D̂(1)

ESP −D| are shown in Fig. 4. The
overall shape of the error curves is consistent with the theoreti-
cal predictions in Theorem 2 and the numerical conditioning in
the previous section.
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Fig. 4. Errors in λ1 and the estimated delay.
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Appendix A. LAGRANGE AND HERMITE
INTERPOLATION

Consider a set of distinct nodes χ = {χn}n∈[S] ⊆ R and values
{ fn}n∈[S] ⊆ R. The classical Lagrange interpolation problem
seeks a polynomial q(z), deg(q) ≤ S − 1 satisfying q(χn) =
fn for all n ∈ [S]. It is well known that the solution to the
problem is given by q(z) = ∑n∈[S] fnLχn(z), where the Lagrange
interpolation basis is

Lχ,n(z) = ∏
j ̸=n

z−χ j

χn −χ j
, n ∈ [S]. (A.1)

Given the Lagrange interpolation basis (A.1), one can construct
the corresponding Hermite interpolation basis is

Hχ,n(z) =
[
1−2(z−χn)L′

χ,n(χn)
]

L2
χ,n(z),

H̃χ,n(z) = (z−χn)L2
χ,n(z), n ∈ [S].

(A.2)

The Hermite basis is related to this interpolation problem: intro-
ducing further { f ′n}n∈[S], one seeks a polynomial r(z), deg(r)≤
2S− 1 satisfying r(χn) = fn, r′(χn) = f ′n for all n ∈ [S]. The
solution is given by r(z) = ∑n∈[S]

(
fnHχ,n(z)+ f ′nH̃χ,n(z)

)
.

An alternative solution to the Hermite interpolation prob-
lem can be formulated as follows. Given polynomial p(z) =
∑

2S−1
j=0 a jz j, we introduce the coordinate map

C(p) = [a0, . . . ,a2S−1]
⊤
.

Then, the Hermite interpolating polynomial r(z) satisfies

WχC(r) = col
{[

fn
f ′n

]}S

n=1
,

Wχ := col
{[

1 χn χ
2
n . . . χ

2S−1
n

0 1 2χn . . . (2S−1)χ2S−2
n

]}S

n=1

(A.3)

The matrix Wχ maps C(r) to the values of p(z) and p′(z) at the
interpolation nodes {χn}S

n=1. Since the Hermite interpolation

problem is always solvable, Wχ is invertible. Moreover, it can
be verified that

HS (χ) :=W−⊤
χ =

(
row

{[
C(Hχ,n) C(H̃χ,n)

]}S
n=1

)⊤
∈ R2S×2S

is the unique matrix satisfying

HS (χ)col
{

ζ
j}2S−1

j=0 = col
{[

Hχ,n(ζ )
H̃χ,n(ζ )

]}S

n=1
(A.4)

for all ζ ∈ R.

Appendix B. INTEGRAL CONVERGENCE

Proposition 2. Let 0 ≤ w1 < w2 ≤ ∞ and define
Qα(x) =− log

(
1− e−αx)> 0, x ∈ (0,∞),

where α > 0. The integrals

Jw1,w2(α) :=
∫ w2

w1

Qα(x)dx (B.1)

are finite, decreasing, and limα→∞ Jw1,w2(α) = 0.

Proof. We prove the result for w1 = 1 and w2 = ∞ (other cases
are similar). Integrating by parts, we have

J1,∞(α) =
[
−x log

(
1− e−αx)]∞

1 +α

∫
∞

1

x
1− e−αx e−αxdx.

The first term on the right-hand side has

lim
x→∞

x log
(
1− e−αx)=−α lim

x→∞

x2

1− e−αx e−αx = 0,

whereas

0 <
∫

∞

1

x
1− e−αx e−αxdx ≤ eα

eα −1

∫
∞

1
xe−αxdx < ∞.

Hence, J1,∞(α)< ∞.

Next, for a fixed x ∈ (0,∞),
(0,∞) ∋ α 7→ − log

(
1− e−αx) ∈ (0,∞)

is decreasing, whence J1,∞(α) is also decreasing. Let ε > 0,
α > 1 and M > 1. Then,

J1,∞(α) ≤ J1,M(α)+JM,∞(1)

=
∫ M

1
− log

(
1− e−αx)dx+

∫
∞

M
− log

(
1− e−x)dx.

Choosing M so that the rightmost integral is smaller than ε

2
and then α∗ such that J1,M(α) < ε

2 for α > α∗, we have that
α > min(1,α∗) implies 0 < J1,∞(α)< ε .


