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Abstract

Urban rats are highly adaptable, thriving in the dynamic and often inhospitable conditions
of modern cities. Despite substantial mitigation efforts, they remain an enduring presence in
urban environments, yet surprisingly little is known about the daily lives and behavioral strate-
gies that underlie their success. Here, we conducted fieldwork on free-ranging rats in New York
City, using thermal imaging and ultrasonic audio recordings. We apply cutting-edge artificial
intelligence techniques to capture high-resolution movement patterns and generate 3D recon-
structions of foraging environments including subways, streets, and parks. We characterize social
vocalizations across environmental contexts, and compare the patterns of social communication
observed in NYC rats to the distribution of rodent vocalizations reported in the literature. This
work provides a foundation for translating techniques and theories of rodent cognition from the
lab to urban ecological settings.

1 Introduction

The study of animal cognition in complex urban environments is increasingly tractable, and in-
creasingly timely, due to advances in techniques and theories for understanding cognitive behavior.
Studying animals, especially rodents, in urban environments has a strong history in ethology and
ecology (9, |17, 25, |38, 49, 57, 72|, and new methods are emerging in neuroscience [33]. An un-
derstanding of behavior in urban contexts is crucial for mitigation efforts, designing cities, and
controlling disease spread. A recent revolution in the development of artificial intelligence ap-
proaches to understand behavior (e.g. keypoint tracking and action recognition) have enabled
analysis of animal kinematics at unprecedented spatiotemporal resolution, and these approaches
are beginning to be deployed in the field |11} |37} |45, 51, [77]. Moreover, machine learning-based
techniques to quantify acoustics (e.g. animal vocalizations, soundscapes) are coming online |18} |61}
63, 65]. Despite progress in these domains, quantification of animal behavior in the wild remains
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technically challenging. For example, tracking multiple animals in the lab is non-trivial in part
due to animals occluding each other’s body parts during social interactions; this problem is further
complicated en natura by occlusions from the environment (e.g. leaves, branches, rocks, etc.).
In the acoustic domain, the ability to segment, featurize, and classify environmental sounds is a
persistent problem under active research. This is primarily due to the complexity and variability
of real-world soundscapes, which often contain overlapping sources, non-stationary noise, and lack
large-scale annotated datasets [64]. As neuroscientists uncover the neural basis of cognitive behav-
iors in lab settings, there is increasing interest in studying the neural basis of an expressive set of
natural behaviors [13, |16} [21} 32, |40} 41| 47, [55]. We must develop integrated behavioral analysis
systems and multimodal modeling frameworks that are robust in the environmental complexities
of the real world. Here, we address this gap by performing fieldwork in wild New York City (NYC)
rats and introducing a computational toolkit for analysis of behavior and the environment.

Rats have been reported in NYC since early colonial days, and have experienced intense selective
pressure since then. Rats originally became commensal with human cities in Asia a couple thousand
years ago. After reaching Europe around 800 years ago, brown rats (Rattus norvegicus — also
called ”Norway rats” due to a misconception about their origins) rapidly became a prominent
urban pest. They spread throughout Africa, the Americas, and Australia during the 18th and
19th centuries as a result of European colonialism [42]. Rat populations likely experienced strong
selective pressure within port cities, which underwent rapid industrialization and urbanization
[22]. A recent study [20] used isotopic analysis and mass-spectrometry to analyze archaecological
(1550s-1900 CE) rat remains from eastern North America and provided a large-scale framework
for species arrival, inter-specific competition, and dietary ecology. The study found that brown
rats arrived earlier than previously expected and rapidly out-competed black rats in coastal urban
areas. Urban environments changed dramatically from the late 19th into the 20th century, a period
that spans around 500 rat generations. An analysis of the genomes of New York City brown rats
found intriguing signatures of adaptation near genes associated with metabolism, diet, the nervous
system, and locomotor behavior (]|22]), and there is evidence for a significant change in rat cranial
shape in New York City over a 120-year period [56].

Rats demonstrate a remarkable ability to adapt to the changing urban environment. Rats
only require a single ounce of food and water a day to live [6]. They primarily find food and
shelter at human habitations, and therefore they must interact with humans in various ways. In
particular, the city’s rats adapt to practices and habits among New Yorkers for disposing of food
waste [70]. Curbside overnight garbage disposal from residences, stores, subway and restaurants,
as well as littering, contribute to the sustenance of the city’s rats. Rats nearly always use the same
routes to their food sources, probably using olfactory cues or their own secretions such as urine
[69]. Interestingly, rat behavior changed during the COVID lockdown, as their access to food was
altered |4} |50].

Urban rats face many of the same challenges as human city dwellers. One striking commonality
between urban humans and rats is their diet [19]. Today, the urban human diet contains an
increasingly large proportion of highly processed sugars and fats that cause a number of public
health concerns. Some of these health concerns could conceivably apply to rats as well. Rats in
New York City play a very important role in spreading disease, and are commonly infested with
fleas, lice and mites that carry bacteria that can cause disease in humans, including bubonic plague,
typhus and spotted fever [15]. Bartonella pathogens (which can cause cat scratch disease, trench
fever, Carron disease) and various viruses were also found in New York City’s rats in this study. Our
study of the behavioral repertoire, movement patterns and collective behaviors of New York rats
could add an important layer of understanding of how diseases spread via the behavioral dynamics
of rats, informing mitigation efforts.
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Understanding rat behavior, and its relation with particular features of urban environments, is
a crucial piece of rat mitigation efforts. Various municipalities have declared a “war on rats” since
at least the early 1900s, and current best practices involve integrated pest management measures,
which mitigate environmental conditions that attract and support rats, instead of relying heavily
on rodenticide poison [35]. The NYC Health Department offers “Rat Academy” training programs
that teach pest control professionals about rat behavior and habitats, and how environmental
features contribute to rat infestations [44]. Our Al-driven approach could contribute to these
control measures by developing a computational understanding of how rat behavior is shaped by
environmental conditions, and rapidly identifying areas of interest for pest control in a dynamic
manner.

From the perspective of understanding cognition, laboratory rats are one of the most important
animal models for both basic and translational research |75]. A key motivation of this study is
to unravel the heterogeneous behavioral repertoires exhibited by wild rats in urban environments
such as New York City. We transfer advanced analytical and Al-driven methods, developed to
study animals in the lab, to the study of rats in the wild. Using these methods, we characterize the
foraging behavior of NYC rats at a high spatiotemporal resolution, focusing on coordinated rapid
movement of groups of rats, 3D geometry of foraging environments, and vocal communication.
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Figure 1: New York City citizen reports of rat sightings. (A) Spatial heatmap of rat sightings
over a 15-year period generated from NYC311 reports. Recording locations from the study are labeled with
gray points (Subway, Park, Sidewalk). (B) Spatial density of rat sightings computed by dividing the total
number of rat sightings (yearly) by the land area of each borough. Error bars are SEM, computed across
the 15-year period. (C) Daily rat sightings over 15-year period shows cyclic rat activity. (D) Number of
sightings by month shows seasonality of sightings, with reports peaking in Summer months. Error bars are
SEM, computed across the 15-year period.
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2.1 Targeting field recordings of rats in NYC

Rats are abundant across NYC (Figure ) Manhattan, the borough with the highest density of
reported rat sightings, has approximately 200 reports of rat per square mile per year (Figure ),
and across NYC, the NYC311 complaints center receives approximately 50 reported rat sightings
per day (Figure ) There is a seasonality to rat sightings, with more rats reported in summer
months (Figure ) Thus, we collected data throughout July 2024 from three distinct locations
in Manhattan. We used public data [43, 73] to identify specific candidate sites, and set out to
record the foraging behavior of groups of NYC rats using RGB and thermal imaging cameras, as
well as ultrasonic microphones (Figure ) Rats prefer to forage in the evening, and in shadowed
areas, which poses a challenge for standard videography methods, but thermal videography made it
possible to visually resolve rodents, even in dark shadowed areas (Figure ) Using these methods,
it was possible to observe groups of rats foraging in a variety of urban environments, including
subways (Figure [2C), city streets (Figure [2D), and parks (Figure 2B), including even areas with
some occlusion due to fencing and underbrush (Figure [2E).

2.2 High-resolution tracking of real-world rat movements using thermal imag-
ing

While multi-object tracking is a well-researched area in Al and computer vision [36], and in par-
ticular in the context of animal tracking [34} |37, 52, |60, 71, |77], applying the different existing ap-
proaches in our field study to extract accurate rat tracks from thermal videos (Figure BA) proved
to be a nontrivial task. In outdoor real-world environments, specific challenges include varying
number of animals per frame, a wide distribution of animal sizes, multiple animal types (e.g. rats
and squirrels), occlusions, and inaccurate and missing detections. In particular, extracting object
boundaries (masks or bounding boxes) rather than skeletons was desirable for size estimation. Fi-
nally, to process large amounts of videos, we were interested in methods providing near-realtime
(or faster) processing speeds. Our detection and tracking pipeline (Figure ) included the most
recent version of the YOLO (You Only Look Once) model [30, 59], fine-tuned on 50 hand-labeled
frames from our thermal videos of rats foraging, combined with the ByteTrack tracking algorithm
[78], which is robust to occlusions and missing track segments, and utilizes low-score detections and
Kalman filtering for predicting new locations.

Interestingly, some rats, likely juveniles, appeared to be substantially smaller than others. The
pixel position (u,v) and bounding box size (s) of each rat was computed over time (Figure 3(C, top).
However, the video was recorded at an angle tilted relative to the ground plane. As a result, mask
sizes in pixel space are disproportionately larger when rats are closer to the camera. We wondered
whether we could infer the true relative sizes and 3D positions of rats from the raw track data. We
constructed a simple probabilistic model M relating, for each tracked rat ¢, its true 3D position
(28,9t 21) at frame t and its true size (S?), to camera-pixel position (ul,v}) and apparent size(s!).
This model depends on intrinsic and extrinsic camera parameters (@), under the assumption that
rats move on a ground plane facing the camera at some angle, and approximates each rat by an
on-plane circle. Using the probabilistic programming language Pyro [5], Q and {S’} were inferred
from the observed data (Figure , bottom). These inferred parameters were subsequently used
to estimate rats’ ground plane positions throughout the video (Figure ,E) by a straightforward
projection. Relative size is computed in units of the bounding box area, and normalized by dividing
by the average rat’s size.

In order to compare the movements of rats of different sizes, we analyze ‘tracklets’, where each
tracklet corresponds to a trajectory of a rat from when it is first detected until it is lost (e.g. it
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Ultrasonic
microphone

Figure 2: Groups of rats foraging in NYC environments observed using thermal imaging.
Colored outlines correspond to sidewalk, park, and subway sites indicated in Figure . (A) Photo of data
acquisition setup, with overlayed schematic of data sources (B) (top) RGB image of an area where rats were
observed foraging in Central Park, New York, NY. Gray outline indicates field of view for thermal imaging
camera. (bottom) Frame from a thermal video of rats foraging in the area outlined above. (C) RGB image
of a subway scene in NYC where rats were observed foraging, together with selected thermal video frames
showing rats. (D) RGB image of a street scene in NYC where rats were observed foraging, together with
selected thermal video frames showing rats. (E) RGB image of a park scene at night with dense underbrush
behind a fence, and thermal image of rats foraging in this scene.

exits the frame). Tracklets shorter than 5 seconds are excluded. We analyze a 10 minute video
of rats foraging, with 201 extracted tracklets and the corresponding relative sizes estimated by
the procedure described above. Note that each rat may enter and exit the frame multiple times,
so there are more tracklets than true rats in the scene. In the analyzed video, the distribution
of inferred animal sizes includes small rats, large rats, and a larger squirrel (Figure ) Larger
animals appeared to move faster than smaller animals (Figure —C). Groups of rats sometimes
appeared to move in coordination. We quantified these moments of coordinated group activity
by computing how many rats were moving faster than a minimum speed threshold (Figure )
Interestingly, rats that participated in moments of coordinated movement tended to be larger than
non-participants (Figure )
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Figure 3: Tracking rats and inferring their relative size and 3D position. (A) Raw thermal video
frames showing rats of a range of sizes (B) Thermal video frames overlayed with bounding masks of rats
detected with YOLO (C) (top) Tracked position (u,v) and size s of rats in pixel-space (bottom) Model
relating true 3D position and relative size (z,y, 2,.5) to position and size in pixel-space, further described
in Section (D) Inferred 3D positions and relative sizes of rats, shown in 3D for a single frame, and (E)
projected onto the ground plane for a series of frames.

2.3 Capturing environmental geometry and statistics using gaussian splatting

We wondered whether it was possible to quantitatively capture 3D models of environments in which
rats were foraging. Recent advances in computer vision make it possible to reconstruct 3D models
of a scene from a sparse collection of camera angles |29} [39]. Urban environments where rodents
forage pose some potential challenges, because they can be highly dynamic spaces, with shadowed
areas, and limited access. We wondered whether it was possible to reconstruct 3D models of such
environments using data acquired with a single handheld RGB camera. Multiple camera views were
collected of a park scene (Figure ), and run through the gaussian splatting model, which first
involves estimating camera positions using the COLMAP algorithm (Figure ), then constructing
a 3D model in the form of collection of 3D gaussians that best explain the data. These models
capture environmental geometry at a high level of detail (Figure ) The models also allow for
quantification of aspects of the environmental statistics that may be relevant to rodent foraging,
such as the degree of shelter versus open-field. We found that this could be captured by analyzing
the standard deviation of gaussian centers in the z-axis (Figure ) Gaussian splats were generated
for a diverse range of urban foraging environments, ranging from parks to streets to subways. Figure
[BE-H shows the same analysis pipeline as in Figure[5]A-D, for a subway scene, using images captured
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Figure 4: Comparing movements of smaller and larger rats. (A) Distribution of inferred relative
sizes for all tracklets. Insets show examples of a small rat, a large rat, and a squirrel. (B) Median speed
of each tracklet as a function of inferred relative size (C) Distributions of speed for tracklets in the lower
and upper size quartiles (two-sample Kolmogorov-Smirnov statistic 0.56, p-value 1.4 x 10~7).(D) Speed as a
function of time for a segment of the video, showing individual rats’ trajectories, as well as the number of fast
rats. Detected moments of coordinated movement are indicated by red dots. Magenta inset shows inferred
trajectories of rats during one particular epoch. (E) Distributions of rat sizes for rats that participate
in coordinated movements, and non-participants (two-sample Kolmogorov—Smirnov statistic 0.222, p-value
0.007)

from an overpass above the subway platform.

2.4 Ultrasonic acoustic recordings of rat vocalizations in New York City

There have been few attempts to document the social vocal lives of rats in their natural urban habi-
tat. Here, we used a wireless ultrasonic microphone (Figure @A) to record vocalizations emitted by
rats in different urban environments during social interactions. First, we find that environments
substantially differ in their acoustics (Figure ) For example, the Subway environment is approx-
imately 12 dB (4x amplitude) louder than the Park environment. Next, we extracted vocalization
annotations from raw audio using a deep neural network (Deep Audio Segmenter, [68]). Vocaliza-
tions mostly occurred in bouts (sequences of vocalizations separated by less than 250 ms of silence)
and were observed in various types of social interactions (Figure [jC-H).

Next, we calculated acoustic features of vocalizations and compared them to a large-scale meta-
analysis of previously published rat vocalization features. Figure shows an example vocalization
bout (same as Figure @E) with DAS-annotated onsets and offsets of every syllable in the bout (pur-
ple). Next, we estimated the fundamental frequency at each time point in the spectrogram (Figure
) and calculated the median for downstream analysis. We computed the median frequency +/-
1 standard deviation for all bouts detailed in Figure [6] then projected their measurements into
a duration vs. frequency feature space detailed by [76] (Figure ) We find that wild NYC rat
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Figure 5: Capturing environmental geometry and statistics using gaussian splatting. (A)
Example RGB images of a park scene from different angles. (B) Inferred camera positions and points in
the 3D scene, from the COLMAP algorithm. (C) 3D scene composed of gaussians inferred by the gaussian
splat algorithm. (D) Top-down heatmap of this 3D scene, showing the standard deviation in the Z axis of
gaussian locations. (E-H) Same as (A-D), for a subway scene.

vocalizations are consistently shorter duration and lie outside of the historical frequency-duration
range reported in the meta-analysis.

3 Discussion

There is an increasing interest in studying animal cognition in natural habitats, especially in light
of new Al tools for quantifying behavior. The advent of new tools may make it possible to translate
mechanistic biological insights from laboratory based studies to natural habitats where animals live.
This study validates a computational toolkit to quantify high-resolution movement and acoustic
behavior of rats living in New York City. In this unconstrained urban environment, we have
demonstrated a set of computational tools that allow us to track large groups of rats, estimate
the relative size of individual rats, reconstruct 3D environments in which rats operate, and record
ultrasonic vocalizations. The computational techniques are all open-source, and the recording
technology is non-invasive with widely available hardware, which will make reproducing this study
in other animals quite straightforward. We were able to map variations in foraging speeds and
coordination of movements for rats of different sizes, compare 3D environmental statistics across
different places where rats forage, and classify ultrasonic vocalizations rats use in different contexts,
finding vocal structure distinct from the distribution of rat vocalizations commonly studied in lab
environments.

Rats demonstrate an impressive ability to survive in rapidly changing urban environments, but
the question of what cognitive strategies they use remains open. With sufficient data across a range
of environmental conditions, it may be possible to infer cognitive strategies from unconstrained
rodent foraging behavior, using a variety of recent computational techniques , . It will
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Figure 6: Ultrasonic acoustic recordings of NYC rat vocalizations in diverse soundscapes. (A)
Field recordings were taken using an Audiomoth wireless ultrasonic microphone. (B) Recordings were taken
from three distinct environments (Subway, Park, Sidewalk) which vary acoustically. (C-H) Vocalization
spectrograms from distinct social contexts and environments. (C) Affiliative social interaction between two
rats in the subway tracks. (D) Human-audible vocalizations from an aggressive interaction between pairs of
rats on the sidewalk nearby trash cans (E) Long-duration bout of calls recorded from a rat foraging inside of
a trashbag on the sidewalk. (F) Human-audible vocalizations from an aggressive interaction between a pair
of rats in the park. Note classically affiliative USVs between 0.75-1.25s. (G) Multiple bouts of vocalizations
recorded from a sidewalk grate where rats were frequently seen entering and exiting. (H) Rat cautiously
poking its head out of a burrow hole from a sidewalk tree lawn.

also be important to individually tag animals to be able to follow individuals and distinct groups
over extended spatio-temporal scales.

The ultrasonic vocalizations (USVs) reported here raise questions about their function in rat
social behavior and challenge traditional assumptions about vocal behaviors observed in the lab-
oratory. USVs are primarily studied in lab environments and there have been few attempts to
understand vocal repertoire diversity and social function in wild rats, though the artist Brian
House recorded rat ultrasonic vocalizations in NYC for a 2022 sound installation [26]. The bio-
logical function of USVs in rodents generally is still largely unknown, but since ultrasound decays
rapidly with distance, one can speculate that they may be emitted in close proximity to enhance
social interactions. They might also be used as a cue to localize nearby conspecifics or to report
your current location like in bats [31]. An intriguing theory proposes that since ultrasound causes
agglomeration of particles in the air like odorants, rodents have evolved an active sampling mecha-
nism which couples USVs with increases in sniffing [67] to enhance the perception of pheromones.
If this were true, it would help explain why we see USVs in such diverse contexts, such as within
trash bags.

It is generally thought that 22 and 50 kHz vocalizations signal aversive and appetitive contexts,
respectively [8]. Here, we observe that 22 kHz vocalizations are used in diverse contexts, some of
which are seemingly not aversive. For example, a long bout of near-22 kHz USVs was emitted
while a single rat foraged inside of a trash bag (Figure @E) Rats have not been reported to emit
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Gray shaded regions denote the historical distribution of durations and frequencies reported in an expansive
literature search from [76]. Horizontal dashed lines denote the two predominant vocalization types studied
in rats.
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22 kHz vocalizations while foraging in laboratory settings; instead, studies have shown that 22 kHz
calls actually suppress feeding behavior [7]. An alternative theory postulates that 22kHz calls could
serve a security function — that is, to signal potential threat (though unperceived) in unpredictable
environments [8]. Our “Sidewalk” data (Figure[6E,G,H) provide intriguing validation of this theory,
where 22 kHz vocalizations are observed in highly unpredictable urban sidewalks in the absence
of overt predatory threat. The acoustics of wild rat vocalizations appear to be relatively out of
distribution as compared to classically recorded lab rat vocalizations, with 22 kHz vocalizations
notably shorter in duration @E,G,H; Figure ) Moreover, we observed numerous vocalizations
that had power in the human audible range (“squeaks”) (6]D,F). Future studies should focus on the
social function of squeaks in wild rats, as most rat vocalization research has focused on USVs. This
direction has been promising in wild mice, with recent work revealing that squeaks are genetically
heritable and used seasonally [27, 28]. More recordings in more contexts over longer timescales
are required to make concrete claims about the biological function of rat vocalizations in an urban
setting.

Our study calls for a better mapping of physical and soundscape environments, to better un-
derstand how environmental statistics impact collective behavior. We characterized three types of
environments where rats forage in NYC — subways, streets, and parks. Using advanced computer
vision techniques, we characterized high-resolution geometric features of the environment that may
be relevant to rodents, specifically, the relative positioning of sheltered areas versus open areas.
The high-resolution 3D environment models can in principle also be used to reconstruct rats-eye-
view images to validate cognitive strategies in simulation, and semantically segment 3D scenes
into behaviorally relevant areas [14, |58]. We also observed highly varied background soundscapes
in different types of environments. Future work should focus on semantic segmentation of sound
events in the soundscape as well as determining the approximate locations of sound sources in the
environment |53} 61]. A crucial follow up to our study is a multimodal mapping of the sensory world
from the perspective of the animal using a combination of computational and advanced recordings
techniques, to investigate how animals interact with the world through their sensory filters.

NYC offers an especially compelling field study location, because of the wealth of public data
and interest from the local population. NYC is a vibrant urban environment where it is possible
to set up Citizen Science projects leveraging calls from 311 (the New York hot-line where you can
report sighting of rats), social media posts depicting rats, or submissions of audiovisual rat data to
a central database such as NYC Open Data [12] for analysis. The current study analyzes only a
small amount of data, especially compared to what could potentially be acquired in NYC. There is
a need for longitudinal passive monitoring [66], e.g. designated research sites, to better understand
natural behavioral patterns by acquiring a large enough data set to infer what cognitive strategies
rats deploy, and predict how groups of rats will behave across different conditions. There have been
a few noteworthy attempts to perform fieldwork in NYC

The computational approach to urban ecology speaks to a myriad of issues facing us today,
related to how dynamic environments impact our collective behavior. These questions are espe-
cially pressing, since the ways we interact in groups, in particular in cities, are changing rapidly
compared to human evolutionary history [3]. Climate change adds another layer to the nonstation-
ary nature of urban environments. Given these changes, it’s increasingly important to understand
how dynamic urban environments impact human and animal populations, at the level of individual
cognition, as well as group behavior. The toolkit outlined here quantifies urban environments and
animal behavior at a high resolution, laying the groundwork for reasoning about how anticipated
or potential changes will impact collective cognitive behavior.
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4 Methods

4.1 Video recordings of groups of rats

Video recordings of groups of rats were obtained in public locations within New York City, including
streets, subway stations, and parks. Due to the minimal equipment involved, recordings on streets
and subway stations were consistent with generally allowed public usage of these spaces that do
not require a permit. Recordings in city parks were performed under a research permit to ELM
from the City of New York Parks & Recreation Natural Resources Group. This research is purely
observational and does not alter or influence the biology, behavior or ecology of the study animals
or other species, so does not require an IACUC (Institutional Animal Care and Use Committee)
protocol, as determined by the Columbia University IACUC. Videos of rat foraging behavior were
obtained using tripod-mounted or handheld FLIR E54 thermal cameras, and simultaneous RGB
video recordings (from GoPro cameras). Each video recording lasted up to 45 minutes, and camera
equipment was attended at all times. In addition, multi-viewpoint videos of each scene from
different angles were acquired using a Google Pixel 7TA camera, for subsequent gaussian splatting
[29] analysis. Gaussian splat .ply files were generated from using the Polycam online tool [54].

4.2 Video analysis

The locations of animals within the thermal videos were tracked using the Supervision and
Ultralytics YOLO [59,|62] libraries. For detection, we trained a YOLO v11 “nano-segmentation”
model (2,834,958 parameters) on 40 hand-labeled frames from our example video, and validated
on another 10 hand-labeled frames, attaining mean average precision of 98.1% at IoU of 0.5. The
training was done on Apple MacBook M3 Pro machine, and took approximately 7 minutes (100
training epochs). The tracking was done using the ByteTrack algorithm, with the following param-
eter settings: track activation threshold of 0.2, lost track buffer of 90 frames (3 seconds), minimum
matching threshold of 0.8 and 5 minimum consecutive frames (the original video is at 30 fps).

To infer rat sizes from observed tracks, we have implemented a simple planar movement model
approximately consistent with the observed scene. A pinhole camera with focal length f is located
at the origin, pointing in the (—1,0,0) direction. We suppose that the rats are moving in a
ground plane, tilted at angle « radians relative to the camera viewing direction, with equation
Y = —X tana — Y. The camera plane coordinates (u,v) of a spatial point (x,y, z) with z # 0 are

then given by
z

u=—f= v=y2
x x
and the ground plane coordinates are given by (g1, g2) = (z, siga)' Approximating every rat by a
sphere with radius r, the projection to the camera plane can be readily computed by the standard
single view geometry transformations for quadrics (e.g. |23, Ch .8.3]) as some explicit function s
of @ = (o, o, f) and x,y, z,r. We take the area of this projection to be the apparent size s. This
gives the transformation for each frame ¢ and rat i:

(uzvvzvsg = (fxivflf;vs(miayzvz;?SZaQ)) . (1)
t t

We model the movement of each rat ¢ as an approximate random walk constrained to the ground
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plane:

(xi+172§+1) = (%722) + 5§a 5% ~ N(0,diag(01)),

?JZH = —a:%H tan o — yo (2)
o1 ~ LogNormal([0.5,0.5],0.3).

In practice, measured values of u,v and especially s are noisy, due to rats varying pose and non-
spherical shapes (see Figure , top panel). Therefore we also introduce latent observational noise:

(afh 77;) = (ui, UD + 6?‘:: 611,; ~ N<07 JQIQXQ)
si=si+n, n~N(0,03), (3)
02,03 ~ LogNormal(0.01,0.01).

Combining with ,, adding simple Gaussian priors on @, the initial positions x%,z(i) and
sizes S*, we thus obtain a complete specification of the generative model M. Implementing the
above model in Pyro probabilistic programming language [5], we obtain the model likelihood of
the observed data P ({4, o, 5;}i¢ | Q,{S'}i). The parameters Q,{S’} are subsequently found
by Maximum A-Posteriori (MAP) estimation, using Pyro’s powerful inference engine based on
stochastic variational inference. This provides estimates of the rat sizes {gz}z Subsequently, the
3D and the ground plane coordinates for each i,¢ are computed via

Fi— —fyo =i viyo s _ uyYo
7wl 4 ftana’ vi+ ftana’ ' vl 4 ftana (4)
git = Z f];t = Zf.

sina’
4.3 Audio recordings

Audio recordings were performed using a battery-powered ultrasonic acoustic logger (AudioMoth
[24]). Recordings were sampled at 192 kHz in “default” mode and written as .WAV files to local
storage (128 GB SD card). The files were later transferred to a workstation for analysis (see
Vocalization extraction and processing). A session was acquired if rat activity was detected or
suspected to be observed in a given area. The device was either handheld or placed on a surface
pointed towards the area of interest at a distance of approximately 2 meters. Session durations
varied between seconds to tens-of-minutes.

4.4 Vocalization extraction and processing

Onsets and offsets of rat vocalizations were determined using a combination of human annotation
and Deep Audio Segmenter (DAS), a supervised deep-learning technique for vocalization extraction
[68]. First, vocalization onsets, offsets, and type were hand annotated (n=211 USVs) and used as
training data for DAS. In brief, DAS learns to predict the onsets/offsets of vocalizations in unseen
audio data and performs best when given diverse training samples (e.g. vocalizations occurring
in various noise conditions). Given that noise conditions are highly variable and unconstrained in
urban environments, it is challenging to train a supervised model to extract vocalizations in all pos-
sible acoustic conditions. Therefore, DAS was used as an aid to generate vocalization annotations
at scale, then subsequently reviewed by a human annotator. Fundamental frequency was calcu-
lated using the VocalPy python package, specifically the vocalpy.feature.sat() function [46].
In one instance — Figure [fC — background noise precluded analysis of fundamental frequency via
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VocalPy, therefore was estimated manually in Ocenaudio [48]. Spectrograms were generated using
the python Matplotlib function matplotlib.pyplot.specgram() with the following parameters:
NFFT=2048, noverlap=256, Fs=192000.

4.5 Data availability
Data and code will be posted publicly upon publication.
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