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Abstract. In this paper we establish accuracy bounds of Prony’s method (PM) for recovery of sparse
measures from incomplete and noisy frequency measurements, or the so-called problem of super-resolution,
when the minimal separation between the points in the support of the measure may be much smaller than
the Rayleigh limit. In particular, we show that PM is optimal with respect to the previously established
min-max bound for the problem, in the setting when the measurement bandwidth is constant, with the
minimal separation going to zero. Our main technical contribution is an accurate analysis of the inter-
relations between the different errors in each step of PM, resulting in previously unnoticed cancellations.
We also prove that PM is numerically stable in finite-precision arithmetic. We believe our analysis will
pave the way to providing accurate analysis of known algorithms for the super-resolution problem in full
generality.

1. Introduction

Consider the problem of finding the parameters {αj , xj}nj=1 of the exponential sum

(1) f(s) =

n∑
j=1

αjx
s
j

from the noisy samples {f(sk)+ϵk}Nk=0. This exponential fitting problem appears in a wide range of different
settings, such as direction of arrival estimation, parametric spectrum estimation, finite rate of innovation
sampling, phase retrieval, as well as Padé approximation, Gaussian quadrature, and moment problems, to
name a few (see e.g. [1, 3, 25, 27, 32] and the references therein).
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An instance of (1) of particular interest occurs when |xj | = 1 for each j = 1, . . . , n. This setting is
motivated by the problem of super-resolution (SR) of sparse measures of the form µ(t) =

∑n
j=1 αjδ(t − tj)

from the samples of its Fourier transform

(2) f(s) = fµ(s) =

∫
e2πıtsdµ(t) =

n∑
j=1

αje
2πıstj ,

known approximately in some bandwidth s ∈ [−Ω,Ω] [14]. An important question in applied harmonic
analysis is to develop robust reconstruction procedures to solve the SR problem with best possible accuracy,
a question which we consider to still be open even in one spatial dimension. In this paper we consider only
the model (2); however, some of our results may be extended to the more general model (1) (i.e. for arbitrary
xj ∈ C \ {0}). The min-max stability of solving (2) has recently been established in [8] when two or more
nodes xj nearly collide, such that the minimal separation δ is much smaller than 1/Ω, see Theorem 1 below.
However, we are not aware of a tractable algorithm provably attaining these bounds.

The Prony’s method (PM) [28] is an explicit algebraic procedure (see Algorithm 2.1 below) which provides
an exact answer to the exponential fitting problem (for arbitrary xj ∈ C) under the assumption of exact data
(i.e., in the noiseless regime ϵk ≡ 0), requiring access to only 2n consecutive samples f(0), f(1), . . . , f(2n−1).
The main insight by de Prony was that the linear parameters {αj}nj=1 can be eliminated from the equations,
reducing the problem of recovering {xj}nj=1 to finding roots of a certain algebraic polynomial (the Prony
polynomial). The coefficients αj are recovered in the second step by solving a Vandermonde-type linear
system. In the presence of noise, PM is considered to be suboptimal – however, to the best of our knowledge,
no rigorous analysis of its stability has been available, in particular in the context of the super-resolution
problem.

1.1. Main contributions. Our main result in this paper is a rigorous proof that Prony’s method is optimal
for the SR problem when the measurement bandwidth Ω is constant while the minimal node separation
satisfies δ → 0. By analyzing each step of PM and taking care of error propagation, we show that the
error amplification factors for both the nodes and amplitudes are asymptotically equivalent to the min-
max bounds (i.e., the best achievable reconstruction errors under the worst-case perturbation scenario) of
Theorem 1 under the optimal noise scaling (a.k.a. the threshold SNR). These results are given by Theorem
2 and Theorem 3 respectively. In effect, our results provide a generalization of Theorem 1 to the true multi-
cluster setting (but still restricted to Ω = const). As a direct corollary, we also show that PM is numerically
stable in finite-precision arithmetic (Section 7).

Since PM is a multi-step procedure, in principle the errors from each step might have an adverse effect on
the next step (such a phenomenon may occur, for instance, when solving linear systems by the LU decom-
position method, where the condition number of the original matrix may be unnecessarily amplified, [17]).
Our main technical contribution is an accurate analysis of the inter-relations between the different errors
in each step of PM, eventually resulting in previously unnoticed cancellations. For comparison, a “naive”
estimation by textbook numerical analysis methods provides too pessimistic bounds, as we demonstrate in
Proposition 1 and Proposition 3.

Remark 1. The error inter-relations become especially prominent in the multi-cluster setting, as for example
it turns out that if the approximate nodes {x̃j}nj=1 recovered from the first step of PM are further perturbed
in an arbitrary direction, for instance by projecting them back to the unit circle, then the resulting errors in
the amplitudes αj may no longer be optimal (contrary to the single cluster example in Proposition 3). Cf.
Section 8.

1.2. Towards optimal SR. The full SR problem (in particular when Ωδ is small but fixed) is apparently
still algorithmically open. We believe our results may have implications for analyzing the high-resolution
SR algorithms such as ESPRIT/Matrix Pencil/MUSIC, towards establishing their (non-)optimality. Fur-
thermore, the error analysis for different steps may have implications for implementing these methods, cf.
Section 8 and also Remark 1.

Recently we have developed the Decimated Prony’s Method (DPM) [20] (cf. Section 8), which reduces
the full SR problem to a sequence of small problems indexed by a “decimation parameter” λ, followed by
further filtering of the results. In more detail, for each admissible λ, the spectrum f is sampled at 2n
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equispaced frequencies {λk}2n−1
k=0 and the resulting system is subsequently solved by applying PM. Min-max

bounds are attained if one can choose λ = O(Ω). This “decimation” approach was first proposed in [9], and
further developed in a number of publications on SR [5, 6, 10, 7], as well as in the resolution of the Gibbs
phenomenon [4]. Decimation was the key idea in [8] for establishing the upper bound on the min-max error
Λ in Theorem 1 as well. As a consequence of the results of the present paper we have rigorously shown in [20]
that DPM attains the upper bounds on Λ in the special case of ℓ = n, under a mild assumption of genericity
(see also Section 8). We conjecture that DPM in fact attains the upper bounds on Λ in the general case. We
leave the rigorous proof of this conjecture to a future work.

1.3. Organization of the paper. In Section 2 we describe the min-max bounds for SR, and present PM
with an initial sub-optimal stability analysis in this context. The main results are formulated in Section 3,
and subsequently proved in Sections 4,5 and 6, with the more technical proofs delegated to the appendices.
Section 7 is devoted to analyzing the performance of PM in finite-precision arithmetic, while Section 8
demonstrates the different theoretical results numerically.

1.4. Notation. We utilize the following common notations. For ζ ∈ N, [ζ] denotes the set {1, 2, . . . , ζ}.
Asymptotic inequality A ⪅ B,A ⪆ B (A ≍ B) means inequality (resp. equality) up to constants. If
not specified otherwise, the constants are assumed to be independent of the minimal separation δ and the
perturbation size ϵ. We will use the notation col {yi}Ni=0 :=

[
y0 . . . yN

]T , where {yi}Ni=0 ⊆ C are arbitrary
scalars. B(z, r) denotes the standard ball {z′ ∈ C : |z − z′| ≤ r}.

1.5. Acknowledgements. We thank the two anonymous referees for their extremely valuable suggestions,
which helped us improve the manuscript.

2. Super-resolution and Prony’s method

2.1. Optimal super-resolution. The fundamental limits of SR in the sparse model were investigated in
several works in the recent years, starting with the seminal paper [14] and further developed in [10, 8, 12,
22, 24]. For the purposes of this paper, we shall consider the following min-max accuracy bounds derived
in [8]. In what follows, we re-formulate the original bounds in terms of the geometry of the complex nodes
xj := e2πıtj directly, thereby making the notations consistent with (1).

Definition 1 (Minimax rate). Let F denote a set of signals of interest of the form µ = (α,x), where
α = (α1, . . . , αn) and x = (x1, . . . , xn), with x1 < · · · < xn. Given a signal µ ∈ F and a perturbation
function e(s) ∈ L∞([−Ω,Ω]) with ∥e∥∞ ≤ ϵ, let µ̃ = µ̃(fµ + e) denote any deterministic algorithm which
produces an approximation (α̃, x̃) ∈ F . Then the min-max error rates for recovering each node xj and
amplitude αj are given by

Λx,j(ϵ, F,Ω) = inf
µ̃=(α̃,x̃)

sup
µ=(α,x)∈F

sup
e: ∥e∥∞≤ϵ

|xj − x̃j |,

Λα,j(ϵ, F,Ω) = inf
µ̃=(α̃,x̃)

sup
µ=(α,x)∈F

sup
e: ∥e∥∞≤ϵ

|αj − α̃j |.

Remark 2. The condition x1 < · · · < xn is imposed to avoid ambiguity in representing the solution to the
SR problem, as the solutions can only be unique up to an arbitrary permutation of the nodes. This condition
is further assumed throughout the manuscript without any explicit mention thereof.

As noted already in [14], the SR becomes difficult (and, in some sense, nontrivial) when some of the n
nodes {xj}nj=1 may form “clusters” of extent much smaller than the Rayleigh-Nyquist limit 1/Ω. To make
this notion precise, let δ denote a-priori minimal separation between any two xj (the definition below is more
general than the one used in [8]).

Definition 2 (Clustered configuration). Given n ≥ 2, the set of nodes {x1, . . . , xn} is said to form a
(Kx, n, ζ, ℓ∗, δ, τ, η, T )-cluster if there exists a partition

⋃
s∈[ζ] Cs = [n], with Cs

⋂
Cs′ = ∅ for s, s′ ∈ [ζ], s ̸= s′,

such that:
(1) There exists a compact Kx ⊆ C such that xi ∈ Kx, i = 1, . . . , n.
(2) card (Cs) = ℓs for s ∈ [ζ] and ℓ∗ := maxs∈[ζ] ℓs;
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(3) there exist τ > 1 and 0 < δ < 1 such that for any i, j ∈ Cs, s ∈ [ζ]

δ ≤ |xi − xj | ≤ τδ;

(4) there exist η > 1 and T > τδ such that for any i ∈ Cs, j ∈ Cs′ where s, s′ ∈ [ζ], s ̸= s′

T ≤ |xi − xj | ≤ ηT.

Here card (A) stands for the cardinality of the set A.

In the remainder of the paper we will assume that Kx = S1 is the unit circle (this assumption corresponds
to (2), which is the model of interest in this paper) and omit Kx from the clustered configuration parameters.
For clustered configurations, in [8] the worst-case bounds for the recovery problem were established as follows.
Define the super-resolution factor SRF := (Ωδ)−1.

Theorem 1 ([8]). Let F denote the set of signals whose node set forms a cluster with ℓ1 = ℓ∗ and ℓ2 = ℓ3 =
· · · = ℓp = 1, and {|αj |}nj=1 bounded from below and above. For SRF := 1

Ωδ ≥ O(1), and ϵ ⪅ (Ωδ)2ℓ∗−1:

Λx,j(ϵ, F,Ω) ≍

{
SRF2ℓ∗−1δϵ xj ∈ C1,
ϵ
Ω xj /∈ C1,

Λα,j(ϵ, F,Ω) ≍

{
SRF2ℓ∗−1ϵ xj ∈ C1,
ϵ xj /∈ C1.

For discussion of the relations of Theorem 1 to other works on the subject, the reader is referred to [8,
Section 1.4]. Related results are known in the signal processing literature for Gaussian noise model: [21]
provides similar bounds in terms of Cramer-Rao bound (in the case of a single cluster), and the expression
for the threshold SNR for detection was shown to scale like SRF−2 for n = 2 in [32], which is also consistent
with [30].

The upper bound on the minmax error is realized by a non-tractable “oracle-type” algorithm, which,
given a measurement function g(s) = fµ(s) + e(s), produces some signal parameters {α′

j , x
′
j}nj=1 for which

maxs∈[−Ω,Ω] |
∑n

j=1 α
′
jx

′s
j − g(s)| ≤ ϵ. We are not aware of any tractable method which provably achieves

the upper bound on Λ, although some partial results in this direction are known. The ESPRIT algorithm
(originally proposed in [29]) was analyzed in [23] in the case of a discrete measurement model, showing
that the nodes errors are bounded by SRF2ℓ∗−2ϵ provided that ϵ ⪅ (Ωδ)4ℓ∗−3/Ω. The MUSIC algorithm was
partially analyzed in [22], where perturbation bounds on the noise-space correlation function were established;
however this analysis does not imply an effective bound on Λ.

2.2. Prony’s method. PM reduces the problem to a three-step procedure, which involves solution of two
linear systems, in combination with a root-finding step, as described in Algorithm 2.1 and in the following.

Denote the (true) nodes and the amplitudes of Prony’s problem as {xj}nj=1 and {αj}nj=1, respectively.
The so-called (unperturbed) monic Prony polynomial is given by

(3) p (z) =

n∏
i=1

(z − xi) = zn +

n−1∑
j=0

pjz
j .

The coefficients of p(z) are obtained by solving the linear system with a Hankel matrix Hn:

Hn · col {pi}n−1
i=0 = − col {mi}2n−1

i=n , Hn :=

 m0 m1 . . . mn−1

...
...

...
...

mn−1 mn . . . m2n−2

 .(4)

We assume that the algebraic moments mk =
∑n

j=1 αjx
k
j are measured with perturbations (disturbances) of

size ϵ ≥ 0. The latter give rise to a perturbed Hankel matrix

H̃n := Hn + ϵD, D :=

 d0 d1 . . . dn−1

...
...

...
...

dn−1 dn . . . d2n−2

 , di = O(1), i ∈ {0, . . . , 2n− 2} .(5)
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The solution of the linear system

H̃n · col {qi}n−1
i=0 = − col {mi + ϵdi}2n−1

i=n(6)

provides the coefficients of a perturbed monic Prony polynomial

(7) q (z; {di} , ϵ) =
n∏

i=1

(z − x̃i) = zn +

n−1∑
j=0

qjz
j .

The roots of q (z; {di} , ϵ) are then used to obtain the perturbed amplitudes {α̃j}nj=1 by solving a Vander-
monde linear system.

Throughout the paper, we will consider the number of nodes (resp. amplitudes) n to be fixed. We suppose
that the amplitudes satisfy mα ≤ |αi| ≤ Mα, i = 1, . . . , n for some 0 < mα <Mα.

2.3. (Apparent) instability of Prony’s method. PM is generally considered to be suboptimal for solv-
ing (1) when N ≫ 2n−1 (see e.g. [19, 34] and references therein) due to its inability to utilize the additional
measurements. It is also somewhat of a “folk knowledge” that PM is “numerically unstable”, usually con-
tributed to the fact that it involves a rootfinding step, while extracting roots is known to be ill-conditioned
for root clusters (which is precisely our case of SRF ≫ 1). While we are not aware of any rigorous numerical
analysis of Prony’s method in the literature, a rudimentary computation seems to confirm the above claims.

Algorithm 2.1: The Classical Prony’s method
Input : Sequence {m̃k ≡ fµ(k) + ϵk}, k = 0, 1, . . . , 2n− 1
Output: Estimates for the nodes {xj} and amplitudes {αj}

1 Construct the Hankel matrix

H̃n =


m̃0 m̃1 m̃2 . . . m̃n−1

...

m̃n−1 m̃n m̃n+1 . . . m̃2n−2


2 Assuming det H̃n ̸= 0, solve the linear system

H̃n · col{qi}n−1
i=0 = − col{m̃i}2n−1

i=n

3 Compute the roots {x̃j} of the (perturbed) Prony polynomial q(z) = zn +
∑n−1

j=0 qjz
j ;

4 Construct Ṽ :=
[
x̃kj
]j=1,...,n

k=0,...,n−1
and solve the linear system

Ṽ · col{α̃i}ni=1 = col{m̃i}n−1
i=0

5 return the estimated x̃j and α̃j .

Proposition 1. Suppose x forms a single cluster (ℓ = n) configuration and Ω = 2n−1, with the perturbations
ϵk in the moments mk satisfying |ϵk| ⩽ ϵ. Then

(1) If ϵ ⪅ δ2ℓ−2, the coefficients of the Prony polynomial are recovered with accuracy

(8) |pi − qi| ⪅ δ2−2ℓϵ.

(2) If ϵ ⪅ δ3ℓ−3, the nodes {xj}nj=1 are recovered by Prony’s method (Algorithm 2.1) with accuracy
|x̃j − xj | ⪅ δ3−3ℓϵ.

Before embarking on the proof, let us state a well-known fact which can be checked by direct calculation.

Proposition 2. The Hankel matrix Hn admits the Vandermonde factorization Hn = V CV ⊤ where V =[
xkj
]j=1,...,n

k=0,...,n−1
and C = diag{α1, . . . , αn}.
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Proof of Proposition 1. Denote m = col{mi}2n−1
i=n , m̃ = col{m̃i}2n−1

i=n . The polynomial coefficient vectors are
denoted by p = col{pi}n−1

i=0 and q = col{qi}n−1
i=0 , with ∆p = q− p.

We start by proving (8). Let ∥·∥ denote any vector norm and the associated induced matrix norm. Notice
that ∥p∥ ≍ 1 since the exact roots satisfy |xj | ≡ 1. By well-known results from the literature (see, e.g. [10,
Eq. 4.9]), we have σmin(V ) ⪆ δℓ−1. Plugging into Proposition 2 we obtain:

1

∥H−1
n ∥

⪆ σmin(Hn) ⪆ σmin(V )2mα ⪆ mαδ
2ℓ−2.

Put E := H̃n −Hn and e := m̃−m. Define F := EH−1
n . By the above bound, there exists a constant c1

s.t. for all ϵ ≤ c1mαδ
2ℓ−2 we have ∥F∥ < 1

2 . Consequently, for all ϵ ≤ c1mαδ
2ℓ−2 we have

Hnp = m

(Hn + E)(p+∆p) = m̃

(Hn + E)∆p = e− Ep︸ ︷︷ ︸
:=r

∆p = (Hn + E)−1r = H−1
n (I + F )−1r

∥∆p∥ ⪅ ∥H−1
n ∥∥r∥ ⪅ m−1

α δ2−2ℓϵ.

This proves (8).
To derive the second bound in Proposition 1 we shall utilize Rouche’s theorem [11]. We will also obtain

quantitative estimate on the size of the perturbation ϵ required to attain the bound.
To apply Rouche’s theorem, we pick j = 1, . . . , n and set z = z(θ) = xj + ρ∗e

iθ, where θ is an arbitrary
angle. We will seek a condition on ρ∗ which ensures that, for all θ, the following inequality holds:

|p(z(θ))| > |q(z(θ))− p(z(θ))|.

By Rouche’s theorem, this would imply that q(z) has a root in the ball B(xj , ρ∗) and therefore |xj− x̃j | ≤ ρ∗.
Due to the explicit form of p(z) as in (3), we have |p(z(θ))| ⩾ c1ρ∗δ

ℓ−1. On the other hand, using the
estimate (8) and assuming ρ∗ < 1/3 (for simplicity only), we have

(9) |q(z(θ))− p(z(θ))| ⩽ c2δ
2−2ℓϵ.

Now choose ρ∗ = 2c2
c1
δ3−3ℓϵ. To ensure the condition ρ∗ < 1/3 we require ϵ ⩽ c1

6c2
δ3ℓ−3.

This completes the proof. □

As the following proposition demonstrates, apparent difficulties arise also when estimating the errors in
recovering the αj ’s, even assuming that the nodes have been recovered with optimal accuracy.

Proposition 3. Let m = col{mi}n−1
i=0 , m̃ = col{m̃i}n−1

i=0 . Under the assumptions of Proposition 1, for
ϵ ⪅ δ3ℓ−3, let x̃ be a node vector satisfying |x̃j − xj | ⪅ δ2−2ℓϵ. Let α̃ = col{α̃i}ni=1 be the solution of the
linear system Ṽ α̃ = m̃ where Ṽ is the Vandermonde matrix corresponding to x̃, and ∥m̃−m∥∞ ≤ ϵ. Then
|α̃j − αj | ⪅ δ3−3ℓϵ for all j = 1, . . . , n.

Proof. Denote α = col{αi}ni=1, and ∆α = α̃ − α. A well-known bound (see e.g., [13, eq.(2.4)], or any
classical numerical analysis textbook) states that for any vector norm ∥ · ∥ and associated induced matrix
norm, we have

(10)
∥∆α∥
∥α∥

≤ κ(V )

1− κ(V )∥∆V ∥
∥V ∥

(
∥∆V ∥
∥V ∥

+
∥∆m∥
∥m∥

)
, ∆V = Ṽ − V, ∆m = m̃−m,

where κ(A) = ∥A∥∥A−1∥. By Proposition 2 and Gautschi’s bound for ∥V −1∥ [15] we have κ(V ) ⪅
maxi=1,...,n

∏
j ̸=i |xi − xj |−1 ⪅ δ1−ℓ.

Since σmin(V ) ≍ δℓ−1 (as in the proof of Proposition 1) and ∥Ṽ − V ∥∞ ≈ δ2−2ℓϵ, the condition on ϵ
ensures that ∥∆V ∥κ(V ) < 1

2 , and therefore (10) yields in this case

∥∆α∥
∥α∥

⪅ δ1−ℓ(δ2−2ℓϵ+ δ1−ℓϵ) ⪅ δ3−3ℓϵ. □
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Figure 1. Left: the condition number κ(Hn) of the Hankel matrix scales as δ2−2ℓ. Middle: both ∆q and
|xj − x̃j | scale as δ2−2ℓϵ, showing that the errors in the coefficients of the Prony polynomial are not independent.
For comparison, choosing a random perturbation of p with same magnitude as ∆q and computing the roots
yj of the resulting polynomial, we observe that |yj − xj | = O(δ3−3ℓϵ), as predicted by Proposition 1. Right:
the amplitude errors committed by Prony’s method (blue) and by replacing the recovered nodes with random
perturbations (red). Here, in contrast, the bound of Proposition 3 is not attained. All computations are done in
floating-point arithmetic, with ϵ = 10−15.

Now let us consider the setting of Subsection 2.1 again, and suppose that ℓ = n, Ω is constant and
δ → 0. The above analysis suggests that Prony’s method should not be used for solving (1) already in this
simplified setting, as the estimates derived in Propositions 1 and 3 are clearly suboptimal with respect to
the min-max error of Theorem 1. However, the actual numerical performance of Prony’s method turns out
to be much more accurate. Indeed, a simple numerical experiment (Figure 1) demonstrates that Prony’s
method exhibits cancellation of errors in both steps 2 and 3, resulting in errors of the order δ2−2ℓϵ for both
the coefficients of the Prony polynomial and the roots themselves. On the other hand, replacing the error
vector ∆p with a random complex vector ∆r such that |∆rj | = |∆pj | = |qj − pj |, we observe that the
corresponding root perturbations are of the order δ3−3ℓϵ, exactly as predicted by Proposition 1. Thus, a
refined analysis, which is aimed at discovering the true error tolerance of Prony’s method, should take into
account the inter-relations between the errors in different coefficients in step 3.

The bound in Proposition 3 turns out to be extremely pessimistic as well, as evident from Figure 1
(right panel). Here again the bound is not attained as described, the Vandermonde structure of V (resp.
Ṽ ) evidently playing a crucial role with regards to stability. Further experiments suggesting the asymptotic
optimality of Prony’s method both in terms of stability coefficient, and the threshold SNR, have been recently
reported in [20] in the clustered geometry. Motivated by the numerical evidence as described, in this paper
we close the aforementioned gap and derive the true error tolerance of Prony’s method.

3. Main results

Consider the Prony’s method in Algorithm 2.1, and employ the assumptions and the notations of Section
2.2 and Section 2.3. We further assume that the nodes form a clustered configuration as in Definition 2.

The goal of this work is to derive efficient bounds on the errors {|xj − x̃j |}nj=1 and {|αj − α̃j |}nj=1, de-
pending on ϵ and to derive the condition on ϵ which ensures the bounds.

In this paper we use the “homogeneous” version given in Algorithm 3.1, which is computationally equivalent
to Algorithm 2.1. Let p̄(z) denote the corresponding homogenized version of p(z):

p̄ (z) = det


1 z z2 . . . zn−1 zn

m0 m1 m2 . . . mn−1 mn

...

mn−1 mn mn+1 . . . m2n−2 m2n−1

 .(11)

We now state the main theorems of this work.
The node errors {|xi − x̃i|}ni=1, are bounded as follows.
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Algorithm 3.1: The Homogeneous Prony’s method
Input : Sequence {m̃k}2n−1

k=0

Output: Estimates for the nodes {xj}nj=1 and amplitudes {αj}nj=1

1 Compute the roots {x̃j}nj=1 of the Prony polynomial

(12) q̄(z) = det


1 z z2 . . . zn−1 zn

m̃0 m̃1 m̃2 . . . m̃n−1 m̃n

...

m̃n−1 m̃n m̃n+1 . . . m̃2n−2 m̃2n−1

 .
2 Solve the linear system Ṽ · col{α̃j}nj=1 = col{m̃j}n−1

j=0 ;
3 return the estimated x̃j and α̃j for j = 1, . . . , n.

Theorem 2. Let {xi}ni=1 form a clustered configuration as in Definition 2, with largest cluster of size ℓ∗.
Denote mk =

∑n
s=1 αsx

k
s , and let {ds} = O(1) be tolerance coefficients. For each ϵ, let x̃i = x̃i({ds} , ϵ), i =

1, . . . , n be the exact roots of the Prony polynomial q̄ (z; {ds} , ϵ) in (12). Then for ϵ ⪅ δ2ℓ∗−1 the following
holds: if j ∈ Ct (i.e. xj belongs to a cluster of size ℓt), then we have |xj − x̃j | ⪅ δ2−2ℓtϵ.

Note that the estimate on the node errors, which appears in Theorem 2, holds for all node approximations
simultaneously, as the upper bound on the noise is independent of a particular node selection. Theorem 2
then leads to the following result for the amplitude errors {|αi − α̃i|}ni=1.

Theorem 3. Let {ds} ,
{
d̆s

}
= O(1) be two sets of tolerance coefficients. Under the assumptions of Theorem

2, and for each ϵ satisfying the condition ϵ ⪅ δ2ℓ∗−1, let x̃s = x̃s({di} , ϵ), s = 1, . . . , n denote the exact roots
of the perturbed Prony polynomial q̄ (z; {di} , ϵ), and consider col {α̃i}ni=1 which satisfies

Ṽ · col {α̃i}ni=1 = col
{
mi + ϵd̆i

}n−1

i=0
, Ṽ =


1 . . . 1 1
x̃1 . . . x̃n−1 x̃n
...

...
...

...
x̃n−1
1 . . . x̃n−1

n−1 x̃n−1
n

 .
Given any j ∈ Ct (which corresponds to a cluster of size ℓt), we have

|αj − α̃j | ⪅

{
δ1−2ℓtϵ ℓt > 1;

ϵ ℓt = 1.

Similarly to Theorem 2, the latter theorem holds for all amplitudes simultaneously. As a consequence,
we show in Theorem 6 that Algorithm 2.1 (and thus also Algorithm 3.1) retains the stability bounds when
executed in finite precision arithmetic. However, we require several auxiliary definitions in order to state the
precise result, and thus we defer these developments to Section 7.

Some preliminary results, which are needed for the proofs, are given in Section 4. The proof of the
Theorem 2 is the subject of Section 5, while the proof of Theorem 3 is given in Section 6. Some numerical
results are presented in Section 8.

3.1. Proof outline. Before embarking on the technical details of the proofs of the main results, here we
provide a simplified version of the key arguments involved.

3.1.1. Theorem 2. Examining the proof of the second estimate of Proposition 1 in Section 2.3, we notice that
it did not require any particular structure for the errors qi − pi, but only their magnitude via the estimate
(9). This resulted in a suboptimal bound.
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Our strategy to improve the bound (9) on q(z) − p(z) (more precisely, on the difference of the scaled
polynomials, r̄(z) = q̄(z)− p̄(z)) is to explicitly obtain an expansion of the form

r̄(z) =

n∑
k=1

ϵksk(z)

where {sk(z)}nk=1 will be well-defined polynomials, depending also on x1, . . . , xn (in addition to z), thereby
making them multivariate, which in turn depend on the perturbation matrix D (as in (5)). The key obser-
vation is that sk(z) can be further written as linear combination of terms of the form

sk(z;x1, . . . , xn) =
∑
j∈Ik

Dj(z;x1, . . . , xn; D)
∏
i∈Sj

(xi − z)
∏

s,t∈Tj ,s<t

(xs − xt)
2,

where the sets {Sj} , {Tj} as well as the index sets {Ik} are defined combinatorially, while the coefficients {Dj}
are bounded uniformly (and depend on D). This representation of sk is obtained by a careful consideration
of symmetry properties of the associated Vandermonde type determinants resulting from the determinantal
formulas (11) and (12) of p̄(z) and q̄(z), respectively, while further employing (5).

To demonstrate the argument, consider the first order term k = 1. Our calculations show that in this
case

s1(z;x1, . . . , xn) =

n∑
j=1

Dj

∏
i ̸=j

(xi − z)
∏

i ̸=k;i,k∈[n]\{j}

(xi − xk)
2.

Let us replace r̄(z) with the first order approximation ϵs1(z), and consider the Rouche’s theorem argument
from the proof of Proposition 1. Also, for simplicity, consider the case of a single cluster ℓ = n. Set
ρ∗ = ρ̄∗δ, ϵ = ϵ̄δ2n−1 where ρ̄∗, ϵ̄ are to be determined. Set z(θ) = xm+ρ∗e

ıθ as before for some m = 1, . . . , n.
On the one hand:

|p̄(z(θ))| ⪆ δn(n−1)ρ∗δ
n−1 = c1ρ̄∗δ

n2

for some constant c1. On the other hand,

|ϵs1(z(θ))| ⪅ ϵ

{∑
j ̸=m

δn−2ρ∗δ
(n−1)(n−2) + δn−1δ(n−1)(n−2)

}
⪅ ϵδ(n−1)2 = c2ϵ̄δ

n2

for some constant c2. Therefore, the condition of Rouche’s theorem can always be satisfied by choosing
ρ̄∗ <

c2
c1
ϵ̄.

The general argument will be similar in spirit to what is presented above. However, significant technical
elaboration is required due to the combinatorial structures arising in the analysis. Indeed, to complete the
argument, we show that

(1) The arguments can be generalized to the multi-cluster geometry, and
(2) The restriction to first order term is not essential, as the higher order terms exhibit a recursive

property, which allows to bound them in terms of the first order term in ϵ.

3.1.2. Theorem 3. Recall that α = col{αi}ni=1, α̃ = col{α̃i}ni=1, and ∆α = α̃ − α. Let m, m̃ and ∆m be
defined similarly for the first n algebraic moments. The improvement of the bound on the amplitude errors
{|αi − α̃i|}ni=1 in Theorem 3 is achieved by a careful analysis of the Vandermonde structure of the linear
system (V +∆V )(α+∆α) = m̃. Substituting α = V −1m we can extract ∆α as

∆α = Ṽ −1∆m− (I − Ṽ −1V )α.

Our key observation here is that the entries of Ṽ −1V are given by the (perturbed) Lagrange interpolation
basis polynomials evaluated at the original nodes {xj}nj=1. Due to the specific structure of these polynomials,
the correct estimate on |∆α| can be obtained.

Additional complication arises from the multi-cluster case, as the above analysis no longer provides an
accurate estimate; however utilizing correlations between the errors in the perturbed nodes x̃j − xj , we are
able to obtain the correct bound.
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4. Preliminary results

The following lemma will be useful for obtaining an explicit representation of the Prony polynomials p̄(z),
q̄(z) as in (11), resp. (12).

Lemma 1. Let m̃j = mj + ϵdj , j = 0, . . . , 2n− 1, let q̄(z) be given by (12), and let p(z), q(z) be the monic
Prony polynomials given in (3), (7). Then

p̄(z) = (−1)n det (Hn) p(z)(13)

q̄(z) = (−1)n det
(
H̃n

)
q(z)(14)

Proof. See Appendix A.1. □

By Lemma 1 and Proposition 2 we immediately have

p̄(z) = (−1)n

(
n∏

k=1

αk

)
·

 ∏
1≤m<ℓ≤n

(xℓ − xm)
2

 ·

(
n∏

m=1

(z − xm)

)
.(15)

We introduce several definitions that are essential for deriving an explicit ϵ expansion of the perturbed
Prony polynomial q̄ (z; {di} , ϵ). The notations correspond to1 [18, Section 0.8.12]. Given any κ ∈ {1, . . . , n+ 1},
let Qn+1

κ be the set of all increasing sequences of elements from [n+ 1] of length κ, namely

(16) Qn+1
κ = {(i1, . . . , iκ) | 1 ≤ i1 < · · · < iκ ≤ n+ 1} .

The latter is an ordered set with the standard lexicographic order. Given a matrix A ∈ Cn×n, let Cr(A) ∈
C(

n
r)×(

n
r), r ∈ [n] be the r-th multiplicative compound of A, which consists of all r× r minors of A. Namely,

the rows and columns of Cr(A) are indexed by β, γ ∈ Qn
r with the entry [Cr(A)]β,γ being the determinant of

the r×r submatrix obtained by choosing from A the rows in β and columns in γ. We further define C0 (A) = 1.
Let adjr(A), r ∈ [n − 1] be the r-th adjugate of A, where we define adjn(A) = 1 and adj0(A) = detA. In
particular, adj1(A) is the standard adjugate of A.

Introducing

(17) G(z) =


1 z . . . zn−1 zn

m0 m1 . . . mn−1 mn

...
mn−1 mn . . . m2n−2 m2n−1

 , D =


0 . . . 0
d0 . . . dn
...

dn−1 . . . d2n−1


and using (5) and (11), we see that the perturbed Prony polynomial satisfies q̄ (z; {di} , ϵ) = det(G(z)+ ϵD).
By [18, Formula 0.8.12.3], we have the expansion

(18) q̄ (z; {di} , ϵ) =
n+1∑
κ=0

ϵκθn+1−κ(z), θn+1−κ(z) = tr
(
adjn+1−κ(D)Cn+1−κ(G(z))

)
.

Fixing κ ∈ [n+ 1]∪ {0}, the following lemma provides an explicit description of the coefficient of ϵκ in (18).

Lemma 2. The coefficient of ϵκ in (18) is given by

θn+1−κ(z) =



p̄(z), κ = 0∑
γ∈Qn+1

n+1−κ

∑
β∈Qn+1

n+1−κ:1∈β

[
adjn+1−κ(D)

]
γ,β

Γβ,γ(z), 1 ≤ κ ≤ n− 1∑n+1
i=1 [adj(D)]i,1 z

i−1, κ = n

det(D), κ = n+ 1

,

1In the original version of [18] there are several typos in Section 0.8.12, which are fixed in the official errata.
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where for any γ, β ∈ Qn+1
n+1−κ, 1 ≤ κ ≤ n− 1 such that 1 ∈ β, the term Γβ,γ(z) is given by

Γβ,γ(z) = det


za za+k1 . . . za+kn−κ

mb mb+k1 . . . mb+kn−κ

mb+l1 mb+l1+k1
. . . mb+l1+kn−κ

...
mb+ln−κ−1 mb+ln−κ−1+k1 . . . mb+ln−κ−1+kn−κ


n−κ+1

where

(19)

γ = (i1, . . . , in+1−κ) , β = (1, j1, . . . , jn−κ) ,
a = i1 − 1, b = (j1 − 2) + (i1 − 1),
k1 = i2 − i1, . . . , kn−κ = in+1−κ − i1,
l1 = j2 − j1, . . . , ln−κ−1 = jn−κ − j1.

Proof. See Appendix A.2. □

According to Lemma 2, we have

(20)

r(z) = r (z; {di} , ϵ) := q̄ (z; {di} , ϵ)− p̄(z)

=
∑n−1

κ=1 ϵ
κ
[∑

γ∈Qn+1
n+1−κ

∑
β∈Qn+1

n+1−κ:1∈β

[
adjn+1−κ(D)

]
γ,β

Γβ,γ(z)
]

+ϵn
∑n+1

i=1 [adj(D)]i,1 z
i−1 + ϵn+1 det(D).

We aim to obtain an upper bound on r(z) in terms of the clustered configuration parameters (see Definition
2). For that purpose, we consider the expansion (20) and proceed with analyzing Γβ,γ(z) (subject to (19)),
in the case 1 ≤ κ ≤ n− 1.

Theorem 4. Let 1 ≤ κ ≤ n − 1. Consider Γβ,γ(z) in Lemma 2, subject to (19). There exist polynomials
ϕβ,γ(ω1,...,ωn−κ)

(z), (ω1, . . . , ωn−κ) ∈ Qn
n−κ (see (65) in Appendix A.3 for explicit description of ϕβ,γ(ω1,...,ωn−κ)

(z))
such that

(21) Γβ,γ(z) =
∑

(ω1,...,ωn−κ)∈Qn
n−κ

{(∏n−κ
s=1 (xωs − z)

)(∏
1≤s<t≤n−κ(xωt − xωs)

2
)
ϕβ,γ(ω1,...,ωn−κ)

(z)
}
.

Here {xj}nj=1 and {αj}nj=1 are the nodes and amplitudes, respectively, of the noiseless Prony’s problem.

Proof. See Appendix A.3. □

Remark 3. In Theorem 4 with κ = n− 1 we use the convention that
∏

1≤s<t≤n−κ(xωt
− xωs

)2 = 1.

Combining (20) and Theorem 4, we obtain the following presentation for r(z)

(22)
r(z) = ϵn+1

=0︷ ︸︸ ︷
det(D)+ϵn

∑n+1
i=1 [adj(D)]i,1 z

i−1

+
∑n−1

κ=1 ϵ
κ
[∑

γ∈Qn+1
n+1−κ

∑
β∈Qn+1

n+1−κ:1∈β

∑
(ω1,...,ωn−κ)∈Qn

n−κ

[
adjn+1−κ(D)

]
γ,β

×
(∏n−κ

s=1 (xωs
− z)

)(∏
1≤s<t≤n−κ(xωt

− xωs
)2
)
ϕβ,γ(ω1,...,ωn−κ)

(z)
]
.

Here we used the fact that D has a row of zeros (see (17)), whence det(D) = 0. Recall the definition of a
clustered configuration (Definition 2) and consider the expansion (22). Since we assume that {di}2n−1

i=0 = O(1)

(see Theorem 2), we have that [adj(D)]i,1 = O(1), 1 ≤ i ≤ n + 1 and
[
adjn+1−κ(D)

]
γ,β

= O(1) for any
γ, β ∈ Qn+1

n+1−κ, 1 ≤ κ ≤ n − 1, 1 ∈ β. Furthermore, taking into account the continuity of the polynomials
ϕβ,γ(ω1,...,ωn−κ)

(z), we have that for any K ⊂ C compact, we can find a constant C1 = C1(K,Mα, n, η, T ) (i.e.,
depending on the compact K, the clustered configuration parameters n, η, T and the upper bound on the
amplitudes) such that for all γ, β ∈ Qn+1

n+1−κ, 1 ≤ κ ≤ n− 1, 1 ∈ β and (ω1, . . . , ωn−κ) ∈ Qn
n−κ

(23)
∥∥∥ϕβ,γ(ω1,...,ωn−κ)

∥∥∥
L∞(K)

≤ C1

uniformly in δ < 1. The constant C1 will be taken into account below when bounding the difference
r(z) = q̄ (z)− p̄(z) as part of applying Rouche’s theorem (see the beginning of Section 5).
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4.1. First-order asymptotic constant. It may be of interest to have an explicit expression of the first-
order in ϵ term in the node error ηj := xj − x̃j as ϵ → 0+. The following lemma provides this first-order
term.

Lemma 3. The following holds for all j = 1, . . . , n:

(24) ηj := xj − x̃j = (−1)n+1 Ψj(D)

αj

∏
m∈[n]\{j}(xj − xm)2

ϵ+O(ϵ2), ϵ→ 0+.

Here {Ψj(D)}nj=1 are polynomials in X := {x1, . . . , xn} given in (26) below.

Remark 4. Note that if j ∈ Ct with card(Ct) = ℓt, then (24) implies that |ηj | ⪅ |αj |−1δ2−2ℓtϵ as ϵ → 0+,
giving the infinitesimal version of Theorem 2, and by itself already a vast improvement upon Proposition
1. Furthermore, the dependence on 1/|αj | in (24) expresses the intuitive fact that it is harder to accurately
recover nodes with smaller amplitudes.

Proof of Lemma 3. Recall that q̄(x̃j) = 0. To first order in ϵ, (22) implies

(25) 0 = q̄(x̃j) = p̄(x̃j) + ϵ
∑

γ∈Qn+1
n

∑
β∈Qn+1

n :1∈β

[adjn(D)]γ,β Γβ,γ(x̃j) +O(ϵ2),

where, denoting qs = (1, 2, . . . , s− 1, s+ 1, . . . , n) ∈ Qn
n−1, one has

Γβ,γ(x̃j) =

n∑
s=1

{( ∏
i,k∈[n]\{s}

(xi − xk)
2

)( ∏
m∈[n]\{s}

(xm − x̃j)

)
ϕβ,γqs

(x̃j)

}
,

with ϕβ,γqs given by (65) in Appendix A.3. As ϵ → 0+ with all other parameters fixed, the only term in
Γβ,γ(x̃j) which is of order O(1) corresponds to s = j. Further substitution of (15) into (25) implies

(−1)n

(
n∏

k=1

αk

)
·

 ∏
1≤m<ℓ≤n

(xℓ − xm)
2

 ·

(
n∏

m=1

(x̃j − xm)

)

= −ϵ
( ∏

i,k∈[n]\{j}

(xi − xk)
2

)( ∏
m∈[n]\{j}

(xm − x̃j)

) ∑
γ∈Qn+1

n

∑
β∈Qn+1

n :1∈β

[adjn(D)]γ,β ϕ
β,γ
qj

(x̃j) +O(ϵ2)

Using the explicit form (65) leads to (24) where

(26) Ψj(D) =
∑

γ∈Qn+1
n

∑
β∈Qn+1

n :1∈β

[adjn(D)]γ,β sλ (X)
xa
jψλ,qj∏

s<t;s,t∈[n]\{j}(xs − xt)
.

To finish the proof, note that the rightmost factor in (26) is a polynomial (cf. Appendix A.3, (63) - (65)). □

5. Proof of Theorem 2

Recall the definition of clustered configuration (Definition 2). Let j∗ ∈ [n] and assume that 0 < |z−xj∗ | =
ρ∗. Assume further that j∗ ∈ Cµ where the cluster size is ℓµ = card(Cµ). Henceforth, we fix ϵ = ϵ̄δ2ℓ∗−1

and ρ∗ = ρ̄∗δ
2(ℓ∗−ℓµ)+1, where ϵ̄ < 1 and ρ̄∗ <

1
3 min(1, T ) are independent of δ and will be determined

and interconnected subsequently (see (41) below). Notice that since δ < 1 is assumed throughout, we
automatically have that ρ∗ < δ/3 < δ. Finally, since |z− xj∗ | = ρ∗, we have that z lies in S1 +B

(
0, 13

)
. Let

C1 be the constant in (23), which corresponds to this closed neighborhood.
In this section we provide a proof of Theorem 2. The underlying idea of the proof is to show that subject

to the notations above, we can find a pair (ϵ̄, ρ̄∗) (which is independent of δ) for which |p̄ (z)|− |r(z)| > 0, for
arbitrarily small δ < 1. Then, Rouche’s theorem [11] guarantees that the perturbed polynomial q̄ (z; {di} , ϵ)
has a root x̃j∗ such that |xj∗ − x̃j∗ | ≤ ρ∗. The latter will readily yield the result of Theorem 2.
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The proof requires several auxiliary results. From (15) we find

|p̄ (z)| =

(
n∏

k=1

|αk|

)
·

 ∏
1≤m<l≤n

|xl − xm|2
 ·

(
n∏

m=1

|z − xm|

)

≥ mn
α ·

 ∏
1≤m<l≤n

|xl − xm|2
 ·

(
n∏

m=1

|z − xm|

)
.(27)

We bound the two rightmost terms separately. First, given m, ℓ ∈ [n], m ̸= ℓ, the nodes xm, xℓ satisfy either
m, ℓ ∈ Cs for some s ∈ [ζ] or m ∈ Cs, ℓ ∈ Cs′ where s, s′ ∈ [ζ], s ̸= s′. The number of ways to choose two
nodes which do not belong to the same cluster is

ϱ =

(
n

2

)
−
∑
s∈[ζ]

(
ℓs
2

)
.(28)

Remark 5. The latter formula employs generalized binomial coefficients. In particular, if for some s ∈ [ζ],
we have ℓs = 1 (i.e., Cs consists of a single isolated node), then

(
ℓs
2

)
= 0. The same convention will be used

in (73) below.

Recalling the definition of a clustered configuration (Definition 2) we have∏
1≤m<l≤n

|xl − xm|2 ≥ T 2ϱδn(n−1)−2ϱ.(29)

Moreover,
n∏

m=1

|z − xm| = |z − xj∗ | ·

 ∏
m/∈Cµ

|z − xm|

 ·

 ∏
m∈Cµ\{j∗}

|z − xm|

(30)

Using (29) and (30), we obtain (recall that ρ∗ < δ/3)

(31)
|p̄ (z)| ≥ mn

αρ∗ (δ − ρ∗)
ℓµ−1

Tn+2ϱ−ℓµδn(n−1)−2ϱ

≥ mn
α

(
2
3

)ℓµ−1
Tn+2ϱ−ℓµ ρ̄∗δ

n(n−1)+2ℓ∗−ℓµ−2ϱ

= C2ρ̄∗δ
n(n−1)+2ℓ∗−ℓµ−2ϱ

with the constant C2 = C2

(
n,mα, T, {Cs}ζs=1

)
= mn

α

(
2
3

)ℓµ−1
Tn+2ϱ−ℓµ .

Next, consider the expansion (22) and write it as

(32)

r(z) = ϵn+1Ωn+1(z) + ϵnΩn(z) +
∑n−1

κ=1 ϵ
κΩκ(z),

Ωn+1(z) = det(D)
(17)
= 0,

Ωn(z) =
∑n+1

i=1 [adj(D)]i,1 z
i−1,

Ωκ(z) =
∑

γ∈Qn+1
n+1−κ

∑
β∈Qn+1

n+1−κ:1∈β

∑
(ω1,...,ωn−κ)∈Qn

n−κ

([
adjn+1−κ(D)

]
γ,β

×
(∏n−κ

s=1 (xωs
− z)

)(∏
1≤s<t≤n−κ(xωt

− xωs
)2
)
ϕβ,γω1,...,ωn−κ

(z)
)
, 1 ≤ κ ≤ n− 1.

We introduce the following notation for 1 ≤ κ ≤ n− 1

(33) P(ω1,...,ωn−κ) :=

(
n−κ∏
s=1

|xωs − z|

) ∏
1≤s<t≤n−κ

|xωt − xωs |2
 , (ω1, . . . , ωn−κ) ∈ Qn

n−κ

Then, recalling (23) and {di}2n−1
i=0 = O(1), we have for 1 ≤ κ ≤ n− 1

(34)
ϵκ |Ωκ(z)| ≤ C1 maxγ,β∈Qn+1

n+1−κ

∣∣∣[adjn+1−κ(D)
]
γ,β

∣∣∣Φκ

Φκ =
∑

γ∈Qn+1
n+1−κ

∑
β∈Qn+1

n+1−κ:1∈β

∑
(ω1,...,ωn−κ)∈Qn

n−κ

[
ϵκP(ω1,...,ωn−κ)

]
.

Note that Φκ is defined to contain ϵκ. Our next step is to derive recursive bounds on {Φκ}n−1
κ=2 in terms

of Φ1. The latter will simplify the upper bounding of r(z). To proceed, we derive the following relations on
the expressions P(ω1,...,ωn−κ).
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Lemma 4. Let (ω1, . . . , ωn−κ) ∈ Qn
n−κ, 1 ≤ κ ≤ n− 2 and fix 1 ≤ s ≤ n− κ. Then

(35)
P(ω1,...,ωn−κ)

P(ω1,...,ωs−1,ωs+1,...,ωn−κ)
⪆ min

(
ρ∗δ

2(ℓµ−1), (δ − ρ∗)δ
2(ℓµ−1), δ2(ℓ∗−1)

)
.

Moreover,

(36)
ϵκP(ω1,...,ωn−κ)

ϵκ+1P(ω1,...,ωs−1,ωs+1,...,ωn−κ)
⪆
ρ̄∗
ϵ̄
.

Proof. See Appendix B.1. □

Using Lemma 4 and (34) we conclude that there exist positive constants Ξκ, 1 ≤ κ ≤ n − 1 that are
independent of δ and satisfy

(37) ϵκ |Ωκ(z)| ≤
(
ϵ̄

ρ̄∗

)κ−1

ΞκΦ1, 1 ≤ κ ≤ n− 1.

Note that Ξ1 = 1. Recalling that Ωn+1(z) = 0, introducing Ξn =
∑n+1

i=1

∣∣∣[adj(D)]i,1

∣∣∣ ( 43)i−1 and employing
(37), we obtain the following upper bound

(38) |r(z)| ≤ ϵnΞn +

(
1 + ϵ̄

ρ̄∗
Ξ1 + · · ·+

(
ϵ̄
ρ̄∗

)n−2

Ξn−1

)
Φ1.

Consider first the leftmost term on the right-hand side. We derive an upper bound which will be used in the
application of Rouche’s theorem below (see (31) and (41)).

Proposition 4. The following holds

(39) (ϵ/ϵ̄)n ≤ δn(n−1)+2ℓ∗−ℓµ−2ϱ

Proof. See Appendix B.2. □

To continue with (38), we would like to upper bound Φ1 (see (34) for the definition).

Lemma 5. Let ϵ = ϵ̄δ2ℓ∗−1 and ρ∗ = ρ̄∗δ
2(ℓ∗−ℓµ)+1, where δ < 1. Assume that ϵ̄ < 1 and ρ̄∗ < 1

3 min(1, T )
are independent of δ. Then,

ϵP(ω1,...,ωn−1)

ϵ̄δn(n−1)+2ℓ∗−ℓµ−2ϱ ⪅


1, ωs ̸= j∗ for all s ∈ [n− 1]

ρ̄∗δ
2(ℓ∗−ℓµ), ωs ̸= t for some t ∈ Cµ \ {j∗} ,

ρ̄∗δ
2(ℓ∗−ℓι)+1, ωs ̸= b for some b ∈ Cι, ι ̸= µ

with a constant that is independent of δ.

Proof. See Appendix B.3 □

We are now ready to finish the proof of Theorem 2. By combining (34) in the case κ = 1 and Lemma 5,
we obtain that there exists some Ξ0 > 0, independent of δ, such that

(40) Φ1 ≤ Ξ0

1 + ρ̄∗δ
2(ℓ∗−ℓµ) +

∑
ι ̸=µ

ρ̄∗δ
2(ℓ∗−ℓι)+1

 ϵ̄δn(n−1)+2ℓ∗−ℓµ−2ϱ.

Recalling (31) and (38), we have

(41)

R := |p̄(z)|−|r(z)|
δn(n−1)+2ℓ∗−ℓµ−2ϱ ≥ C2ρ̄∗ −

ϵnΞn+
(
1+ ϵ̄

ρ̄∗ Ξ1+···+( ϵ̄
ρ̄∗ )

n−2
Ξn−1

)
Φ1

δn(n−1)+2ℓ∗−ℓµ−2ϱ

(39),(40)
≥ C2ρ̄∗ − ϵ̄nΞn − ϵ̄

(
1 + ϵ̄

ρ̄∗
Ξ1 + · · ·+

(
ϵ̄
ρ̄∗

)n−2

Ξn−1

)
×Ξ0

(
1 + ρ̄∗δ

2(ℓ∗−ℓµ) +
∑

ι ̸=µρ̄∗δ
2(ℓ∗−ℓι)+1

)
.

At this point we impose a linear relationship between ρ̄∗ and ϵ̄ as follows:

ϵ̄ = αρ̄∗, α < 3.
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The condition α < 3 ensures that ϵ̄ < 1 for all ρ̄∗ < 1
3 . We can further bound the right-hand side of (41):

R

ρ̄∗
≥ T (α),(42)

T (α) := C2 −
αnΞn

3n−1
− α

(
1 + αΞ1 + · · ·+ αn−2Ξn−1

)
Ξ0

(
1 +

δ2(ℓ∗−ℓµ)

3
+

∑
ι ̸=µ δ

2(ℓ∗−ℓι)+1

3

)
.

Since T (0) = C2 > 0 and T (α) is continuous, there exists α0, independent of ρ̄∗, such that T (α) > 0
for all α ∈ (0, α0). Now put α1 := min(α0, 3). We have shown that for all α ∈ (0, α1) and all ρ̄∗ < 1

3 we
have R > 0. Therefore, by applying Rouche’s theorem [11] and using the fact that p(z) and p̄ (z) differ by a
multiplicative constant the following implication is true:

∀α ∈ (0, α1), ∀ρ̄∗ <
1

3
: ϵ = αρ̄∗δ

2ℓ∗−1 =⇒ |xj∗ − x̃j∗ | ≤ ρ∗ = ρ̄∗δ
2(ℓ∗−ℓµ)+1 = ρ̄∗

ϵ

ϵ̄
δ2−2ℓµ =

1

α
δ2−2ℓµϵ.

By fixing some 0 < α2 < α1 and letting ρ̄∗ < 1
3 be arbitrary, we rewrite the above as

∀ρ̄∗ <
1

3
: ϵ = ρ̄∗α2δ

2ℓ∗−1 =⇒ |xj∗ − x̃j∗ | ≤
1

α2
δ2−2ℓµϵ, j∗ ∈ Cµ, ℓµ = card(Cµ).

Since the above holds for arbitrary δ < 1, this completes the proof of Theorem 2.

6. Proof of Theorem 3

In this section we consider the amplitude approximation error {|αj − α̃j |}nj=1. Throughout the section
we assume that the conditions of Theorem 2 hold. In particular, we have ϵ = ϵ̄δ2ℓ∗−1, whereas given any
j ∈ [n], j ∈ Ct we denote by ρj = ρ̄jδ

2(ℓ∗−ℓt)+1 the upper bound on the node recovery error |xj − x̃j |. Here,
ϵ̄ < 1 and ρ̄j < 1

3 min(1, T ) are independent of δ and chosen as in the proof of Theorem 2. In particular, note

that ρj ⪅ ϵ
δ2ℓt−2 , as obtained from Theorem 2. Let {di} ,

{
d̆i

}
= O(1) be two sets of tolerance coefficients

(see Theorem 3).
Recall that the algebraic moments are given by mk =

∑n
j=1 αjx

k
j . Consistent with previous notation in

Proposition 3 and Section 3.1.2, set α = col{αi}ni=1, α̃ = col{α̃i}ni=1, and ∆α = α̃−α. Introducing

(43) m = col {mi}n−1
i=0 , m̃ = col

{
mi + ϵd̆i

}n−1

i=0
, ∆m = m̃−m

we have that both the perturbed and unperturbed amplitudes satisfy

V ·α = m, Ṽ · α̃ = m̃(44)

with Ṽ given in the formulation of Theorem 3 and V having the same form as Ṽ with the perturbed nodes
{x̃j}nj=1 replaced by the unperturbed nodes {xj}nj=1. Denote further Ṽ − V =: ∆V . Then

Ṽ ·∆α = ∆m−∆V ·α ⇒ ∆α = Ṽ −1 · (∆m−∆V ·α) = Ṽ −1 ·∆m−
(
I − Ṽ −1V

)
·α.(45)

For the rightmost term in (45), let

(46) L̃i(z) =
∏
k ̸=i

z − x̃k
x̃i − x̃k

=

n−1∑
b=0

l̃i,bz
b, i = 1, . . . , n

be the Lagrange basis corresponding to x̃1, . . . , x̃n. Since the the columns of Ṽ −T contain the coefficients of
the latter Lagrange basis, we have

(47) Ṽ −1 =

 l̃1,0 . . . l̃1,n−1

...
...

...
l̃n,0 . . . l̃n,n−1

 =⇒
[
Ṽ −1V

]
s,b

=

n−1∑
k=0

l̃s,kx
k
b = L̃s(xb) =

∏
m ̸=s

xb − x̃m
x̃s − x̃m

, s, b ∈ [n].

We begin by considering the term Ṽ −1 ·∆m in (45).
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Proposition 5. Fix j ∈ [n] such that j ∈ Ct. The following holds∣∣∣∣[Ṽ −1 ·∆m
]
j

∣∣∣∣ ⪅ ϵ

δℓt−1
.

Proof. See Appendix C.1. □

Consider now the term
(
I − Ṽ −1V

)
, appearing in (45).

Proposition 6. Fix j ∈ [n] such that j ∈ Ct. The following estimate holds:∣∣∣∣δj,s − [Ṽ −1V
]
j,s

∣∣∣∣ ⪅
{

ϵ
δ2ℓt−1 , s ∈ Ct,

ϵ

δℓt+maxa̸=t ℓa−2 , s /∈ Ct
(48)

where δj,s denotes the Kronecker delta.

Proof. See Appendix C.2. □

From Propositions 5 and 6, and mα ≤ αi ≤ Mα, i ∈ [n], we obtain the following estimate for (∆α)j (see
(45)), where j ∈ Ct:

|(∆α)j |≤
∣∣∣∣[Ṽ −1 ·∆m

]
j

∣∣∣∣+ n∑
s=1

(∣∣∣∣δj,s − [Ṽ −1V
]
j,s

∣∣∣∣ · |αs|
)

⪅
ϵ

δℓt−1
+

ϵ

δ2ℓt−1
+

ϵ

δℓt+maxa ̸=t ℓa−2
⪅

ϵ

δ2ℓ∗−1
.(49)

Note that the analysis in Proposition 6 yields an upper bound which couples the different clusters together
via their sizes {ℓa}a∈[ζ]. Therefore, in (49), we see that clusters of larger size may influence accuracy of
coefficients belonging to cluster of smaller size. This leads to a non-sharp upper bound on the amplitude
errors, which will be improved in the next section.

Remark 6. If xj , j ∈ Ct is an isolated node, the estimate (49) is replaced by

|(∆α)j | ⪅ ϵ+
ϵ

δmaxa̸=t ℓa−1
⪅

ϵ

δℓ∗−1
.(50)

See Remark 9 for the necessary modifications.

6.1. An improved bound on the amplitude error. Considering (xj , αj) with j ∈ Ct, from (48) and
(49) it can be seen that the leading contribution to the amplitude error stems from pairs (xs, αs) satisfying
s ∈ Ca with a ̸= t (i.e., pairs out of the cluster Ct), if ℓa > ℓt. Here we aim to improve the previous analysis,
in order to achieve a better bound on the amplitude error.

Let b ∈ [ζ], b ̸= t. We consider the contribution of the nodes in Cb =
{
xi1 , . . . , xiℓb

}
to |(∆α)j | , j ∈ Ct

(leading to the suboptimal bound ϵ

δℓt+maxa ̸=t ℓa−2 in (49)) through
(
I − Ṽ −1V

)
·α (see (45)). For simplicity

of notations, we assume henceforth that b = 1 and xik = xk, k ∈ [ℓ1]. This can always be achieved by index
permutation.

Since t ̸= 1, the contribution of C1 is given by

V1 :=

ℓ1∑
ν=1

[
Ṽ −1V

]
j,ν
αν

(47)
=

ℓ1∑
ν=1

αν

∏
m ̸=j

xν − x̃m
x̃j − x̃m

.(51)

The following theorem bounds V1. Although we assume that b = 1 for ease of notation, note that the theorem
remains valid for any cluster Cb where b ̸= t (the proof remains the same subject to more tedious notations).

Theorem 5. Assume the conditions of Theorem 3. The following estimate holds:

V1 ⪅ δ1−ℓtϵ.
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Proof. Denote

A := det H̃n = (−1)n
( n∏

k=1

α̃k

)( ∏
1≤m<s≤n

(x̃m − x̃s)
2

)

B :=
∏
m ̸=j

(x̃j − x̃m) , C :=

ℓ1∏
ν=1

(xν − x̃j).

These quantities can be effectively bounded from below, using the following facts:

(1) |x̃j − x̃m| ⪆ δ by Theorem 2;
(2) |α̃j −αj | ⪅ 1 by (49). Hence, by decreasing α in the proof of Theorem 2 (see definition above (42)),

this quantity can be made smaller than mα

2 ≤
∣∣αj

2

∣∣;
(3) xj /∈ C1.

Therefore we have

A ⪆ δ2
∑

s∈[ζ] (
ℓs
2 ), B ⪆ δℓt−1, C ⪆ 1(52)

Note that q̄(xν) = A
∏n

m=1 (xν − x̃m) = p̄(xν)︸ ︷︷ ︸
=0

+r(xν) for any ν ∈ [ℓ1]. Recalling (20) and (51), we have

A ·B · C · V1 =

ℓ1∑
ν=1

αν

[ ∏
r∈[ℓ1]\{ν}

(xr − x̃j)

]
q̄(xν)

=

n−1∑
κ=1

ϵκ
∑

γ∈Qn+1
n+1−κ

∑
β∈Qn+1

n+1−κ:1∈β

[
adjn+1−κ(D)

]
γ,β

ℓ1∑
ν=1

αν

[ ∏
r∈[ℓ1]\{ν}

(xr − x̃j)

]
Γβ,γ(xν)

+

ℓ1∑
ν=1

αν

[ ∏
r∈[ℓ1]\{ν}

(xr − x̃j)

]{(n+1∑
i=1

[adj(D)]i,1 x
i−1
ν

)
ϵn
}

=: E + F,

where by (19) and (63),

Γβ,γ(xν) =
∑

(ω1,...,ωn−κ)∈Qn
n−κ

{(∏n−κ
s=1 αωs

)(∏n−κ
s=1 (xωs

− xν)
)

×
(∏

1≤s<t≤n−κ(xωt − xωs)
)
sλ
(
xν , xω1

, . . . , xωn−κ

)
xaνψλ,ω1,...,ωn−κ

}
.

Here ψλ,ω1,...,ωn−κ
is given in (64) and sλ

(
xν , xω1

, . . . , xωn−κ

)
is the Schur polynomial for the partition λ

and in the variables xν , xω1
, . . . , xωn−κ

[26, Chapter 3]. Note that to get a nonzero summand in Γβ,γ(xν),
ω1, . . . , ωn−κ should all be different from ν.

To take care of the term F , we use (39) to obtain

ϵn−1

ϵ̄n−1 |A|
⪅ δ(n−1)(2ℓ∗−1)−

∑
s∈[ζ] ℓs(ℓs−1) = δ(n−1)(2ℓ∗−1)−gζ,n(ℓ1,...,ℓn)

where we further employ the notations of Appendix B.2. The proof therein shows that n(2ℓ∗ − 1) −
gζ,n(ℓ1, . . . , ℓn)−2ℓ∗+ℓµ ≥ 0 for any 1 ≤ ℓµ ≤ n. Setting ℓµ = 1, we get (n−1)(2ℓ∗−1)−

∑
s∈[ζ] ℓs(ℓs−1) ≥ 0.

Therefore, it is clear that ϵn−1

ϵ̄n−1|A| ⪅ 1, whence
∣∣F
A

∣∣ ⪅ ϵ. In particular, taking into account (52), this yields∣∣ F
A·B·C

∣∣ ⪅ ϵ
δℓt−1 ,

which is the desired upper bound. Next, we consider E. To shorten the notation, we will write q =
(ω1, . . . , ωn−κ) for a general element in Qn

n−κ. Rearranging the order of summation, we can write E =
17



∑n−1
κ=1 ϵ

κEk, where

Eκ :=
∑

γ∈Qn+1
n+1−κ

∑
β∈Qn+1

n+1−κ:1∈β

[
adjn+1−κ(D)

]
γ,β

∑
q∈Qn

n−κ

Ẽ(γ,β)
κ (q)

Ẽ(γ,β)
κ (q) :=

(
n−κ∏
s=1

αωs

) ∏
1≤s<t≤n−κ

(xωt − xωs)

ψλ,q

×
ℓ1∑

ν=1

ανsλ
(
xν , xω1

, . . . , xωn−κ

)
xaν

(
n−κ∏
s=1

(xωs
− xν)

) ∏
r∈[ℓ1]\{ν}

(xr − x̃j).

(53)

We denote, as in the proof of Lemma 3, qs = (1, 2, . . . , s− 1, s+ 1, . . . , n) ∈ Qn
n−1 and X = {x1, . . . , xn}.

Consider first the case κ = 1. Given (ω1, . . . , ωn−1) ∈ Qn
n−1, we consider the product

∏n−1
s=1 (xωs

− xν)

and notice that it equals zero unless {ν}
⋃

{ωj}n−1
j=1 = [n]. Thus, we obtain

E1 =
∑

γ∈Qn+1
n

∑
β∈Qn+1

n :1∈β [adjn(D)]γ,β
∑

qν ,ν∈[ℓ1]
Ẽ

(γ,β)
1 (qν),

Ẽ
(γ,β)
1 (qν) :=

(∏
s∈[n]\{ν} αs

)(∏
1≤s<t≤n,s,t̸=ν(xt − xs)

)
ψλ,qν

×
∑ℓ1

ν=1 ανsλ (X)x
a
ν

(∏
s∈[n]\{ν}(xs − xν)

)∏
r∈[ℓ1]\{ν}(xr − x̃j)

which we treat as a multivariate polynomial in what comes next, in order to infer its divisibility. Using this
presentation and the properties of sλ and ψλ,qν

(recall that the former polynomial is symmetric, whereas
the latter is an alternating polynomial, as was shown in Appendix A.3), it can be readily verified that E1

satisfies the following properties:
(1) For any s < t, s, t /∈ C1, if xs = xt then E1 = 0: in this case we have

∏
1≤s<t≤n,s,t̸=ν(xt − xs) ≡ 0

in Ẽ(γ,β)
1 (qν).

(2) E1 is invariant with respect to any transposition of two nodes not in C1. This follows from symmetry
of the polynomials sλ and ψλ,qν

·
∏

1≤s<t≤n,s,t̸=ν(xt − xs).
(3) For any s < t, s, t ∈ C1, if xs = xt then E1 = 0. This follows from

∏
s∈[n]\ν(xs − xν) ≡ 0 in

Ẽ
(γ,β)
1 (qν).

(4) E1 is invariant with respect to any transposition of the nodes of C1. This again follows from symmetry
of the polynomials in Ẽ(γ,β)

1 (qν) and summation over qν , ν ∈ [ℓ1].
As a result, E1 is divisible by

H :=
∏

s<t;s,t/∈C1

(xs − xt)
2

∏
1≤r<s≤ℓ1

(xr − xs)
2.

This divisibility immediately implies

|E1| ⪅ |H| ⪅ δ2
∑

s ̸=1 (
ℓs
2 )+2(ℓ12 ) = δ2

∑
s∈[ζ] (

ℓs
2 ) =⇒ ϵ

∣∣∣∣E1

A

∣∣∣∣ ⪅ ϵ.

Hence, by again taking into account (52), we have

ϵ

∣∣∣∣ E1

A ·B · C

∣∣∣∣ ⪅ ϵ

δℓt−1
,

which involves the desired upper bound.
We now proceed by induction on κ to show that |Eκϵ

κ/A| ⪅ ϵ for κ = 1, . . . , n − 1. It can be readily
verified that for each q ∈ Qn

n−κ, Ẽ(γ,β)
κ (q) in (53) satisfies the symmetry properties (1)–(4) above with respect

to the sets q \ C1 and q ∩ C1. Consequently, for each γ, β, Ẽ(γ,β)
κ (q) is divisible by H(q) where

H(q) :=
∏

s<t,s,t∈q\C1

(xs − xt)
2

∏
r<s,r,s∈q∩C1

(xr − xs)
2

does not depend on γ, β.
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Let q1 ∈ Qn
n−κ, q2 ∈ Qn

n−κ−1 such that q2 ⊂ q1 with the obvious meaning (i.e. they differ by a single
index). Since ϵ ⪅ δ2ℓ∗−1, we conclude, by an argument similar to the one employed in the proof of Lemma
4, that

ϵ|H(q2)| ⪅ |H(q1)|.
Applying the induction hypothesis, we have for each q ∈ Qn

n−κ and each γ, β that

ϵκ−1|H(q)| ⪅ |H| =⇒ ϵκ−1
∣∣∣Ẽ(γ,β)

κ (q)
∣∣∣ ⪅ |H| =⇒ ϵκ−1|Eκ| ⪅ |H|.

We conclude that |Eκϵ
κ/A| ⪅ ϵ for κ = 1, . . . , n− 1. This proves V1 ⪅ δ1−ℓtϵ, as required. □

Proof of Theorem 3. Theorem 5 provides the following, improved, estimate on ∆α, appearing in (45)

|(∆α)j | ⪅
ϵ

δℓt−1
+

ϵ

δ2ℓt−1
+

ϵ

δℓt−1
⪅

ϵ

δ2ℓt−1
, j ∈ [n],(54)

where the term ϵ
δ2ℓ∗−2 in (49) (which is obtained from nodes not in Ct) is replaced by the improved estimate

ϵ
δℓt−1 , which follows from Theorem 5, by applying it to each of the clusters different from Ct. This finishes
the proof of Theorem 3. □

Remark 7. For an isolated node xj, Theorem 5 implies that the upper bound on |(∆α)j | in Remark 6 is
replaced by |(∆α)j | ⪅ ϵ.

7. Stability in finite precision computations

So far, the results presented in Theorem 2 and Theorem 3 analyze the performance and output of
Prony’s method subject to computations in exact arithmetic. In particular, we show that the forward
errors {|x̃j − xj |}nj=1 and {|α̃j − αj |}nj=1 are bounded by the condition number of the problem (see Theorem
1) multiplied by the noise level. Therefore, Prony’s method achieves the theoretically optimal recovery bound
for both the nodes and the amplitudes.

In this section we analyze the performance of Prony’s method in the regime of finite-precision compu-
tations. In order to carry out such an analysis, we recall the definition of a backward error induced by
a particular numerical algorithm. We define the normwise backward error in the spirit of approximation
theory:

Definition 3. Let f : Cm → Cn be a given function. Fix x ∈ Cm and let y ∈ Cn be an approximation of
f(x). The backwards error in y is defined as

η(y) = inf {ν : y = f (x+∆x) , |∆x| ≤ ν |x|} .

Namely, the (normwise) backward error is the smallest relative error between x and a perturbed x + ∆x,
which is mapped to y under f .

In the context of computations, one can think of y in Definition 3 as obtained from f(x) by round-off, due
to finite-precision computation. A well-known approach in numerical analysis is to bound the backward errors
committed by a particular numerical algorithm, and conclude that the actual (forward) error is bounded by
the multiple of the backward error and the condition number [17]. A prototypical bound of the forward error
for Definition 3 is then of the form

|y − f(x)|
|f(x)|

≤ cond(f, x)η(y) +O(η(y))2

where cond(f, x) is an appropriate condition number associated with the function f and the point x. Unfor-
tunately, deriving a-priori bounds on the backward error is essentially difficult, and therefore it is frequently
of interest to compute a bound numerically, given an output of a particular algorithm.

To concretize the discussion above for the context of Prony’s method and Algorithm 2.1, we introduce
the following definition. In what follows, for a vector y = col{yi}Ni=0 and 0 ≤ j < k ≤ N two indices, we
denote y[j : k] = col{yi}ki=j .

19



Definition 4. Let q◦ = col
{
q◦j
}n−1

j=0
, x◦ = col{x◦j}nj=1 and α◦ = col

{
α◦
j

}n
j=1

denote the results of Steps 2,
3 and 4, respectively, in a (finite-precision) numerical implementation of Prony’s method (Algorithm 2.1).
The backward errors for each of the steps are defined as follows (all inequalities of the form |a| ≤ c where a
is a vector or a matrix are to be interpreted component-wise):

• Step 2: Let m̃ = col {m̃j}2n−1
j=0 be the vector of perturbed moments. For a vector v ∈ C2n−1, let

Hn(v) ∈ Cn×n denote the Hankel matrix constructed from v. We define, for m̂ = col{m̂j}2n−1
j=0 ,

berr1(q
◦; m̃) = inf

{
ϵ1 : Hn(m̂[0 : 2n− 2]) · q◦ = −m̂[n : 2n− 1], |m̂− m̃| ≤ ϵ1

}
(55)

to be the backward error corresponding to the Hankel system

Hn(m̃[0 : 2n− 2]) · col {q̃j}n−1
j=0 = −m̃[n : 2n− 1].

• Step 3: Denote q̂ = col {q̂j}n−1
j=0 and let

berr2(x
◦;q◦) = inf

{
ϵ2 : (x◦j )

n +

n−1∑
i=0

q̂i(x
◦
j )

i = 0 ∀j = 1, . . . , n, |q◦ − q̂| ≤ ϵ2

}
(56)

be the backward error corresponding to the numerically obtained roots of the Prony polynomial.
• Step 4: Denote m∗ ∈ Cn and x∗ = col

{
x∗j
}n
j=1

. Then define

berr3(α
◦; m̃[0 : n− 1],x◦) = inf

{
ϵ3 : V (x∗)α◦ = m∗, |x∗ − x◦| ≤ ϵ3,

∣∣m∗ − m̃[0 : n− 1]
∣∣ ≤ ϵ3

}
.(57)

to be the backward error corresponding to solving the Vandermonde system for the amplitudes.

Our goal is to estimate the total backward error of Algorithm 2.1, by aggregating over the backward errors
of the steps above. To estimate the backward errors in practice, there are several available results in the
literature, e.g. [2, 16, 31, 33]. For the Hankel linear system structured backward error (when the right-hand
side depends on a subset of the same parameters as the Hankel matrix), we have the following:

Proposition 7. Let r = r(m̃,q◦) = m̃[n : 2n− 1] +Hn(m̃[0 : 2n− 2]) · q◦ ∈ Cn denote the actual residual.
Then

berr1(q
◦; m̃) ⪅ min{∥δ∥2 : δ ∈ C2n, Cnδ = r} ≤ ∥C†

n∥2∥r∥2,

where

(58) Cn(q
◦) = Cn =


q◦0 q◦1 . . . q◦n−1 1 0 . . . 0
0 q◦0 q◦1 . . . q◦n−1 1 0 . . . 0
. . . . . . . . .
0 . . . 0 q◦0 q◦1 . . . q◦n−1 1

 ∈ Cn×2n.

Proof. Following [16], denote δ = m̂− m̃, then the constraint

(59) Hn(m̂[0 : 2n− 2]) · q◦ = −m̂[n : 2n− 1]

in (55) can be rewritten as Cnδ = r. The exact value of the backward error is the solution to the underde-
termined constrained minimization problem min{∥δ∥∞ : Cnδ = r}, which can be, up to constants, bounded
by the solution in the 2-norm. □

The backward error berr2(x◦;q◦), given in (56), can be easily computed as follows: since the values of the
roots in finite-precision, {x◦j}nj=1, are known, the coefficients q̂ = col {q̂j}n−1

j=0 of the corresponding polynomial
can be computed explicitly, followed by direct evaluation of the norm ∥q◦ − q̂∥∞.

As for the structured backward Vandermonde error, we have the following.

Proposition 8. berr3(α
◦; m̃[0 : n− 1],x◦) can be bounded using the following steps:
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(1) Compute the linearized backward error

berrlin3 (α◦; m̃[0 : n− 1],x◦) = min

{
∥(δ1, δ2)∥2 :

[
V ′(x◦) diag(α◦) − In×n

]︸ ︷︷ ︸
:=U

(δ1, δ2)
T = r

}
,

where, as before, r = m̃[0 : n− 1]− V (x◦)α◦ and V ′ =
[
(x◦j )

k
k(x◦j )

k−1]j=1,...,n

k=0,...,n−1
is the confluent

Vandermonde matrix. The solution is given by (δ1, δ2)
T = U†r.

(2) Substitute the obtained minimal perturbation in x and obtain an actual bound for the right-hand side
perturbation:

δ2
′ = V (x◦ + δ1)α

◦ − m̃[0 : n− 1].

(3) Take the bound for the actual backward error to be the maximum between ∥δ1∥, ∥δ2∥, ∥δ2′∥.

Proof. See p.26 in [2]. The ∞-norm estimates can again be bounded by the solution in the Euclidean
norm. □

Theorem 6. Suppose that the numerical algorithms in steps 2, 3 and 4 of Algorithm 2.1 are backward
stable, i.e. the backward errors (55), (56) and (57) are on the order of machine epsilon ϵM , and also that
ϵM ⪅ ϵ. Further assume that for (58), it holds that ∥C†

n(q
◦)∥2 = O(1) (i.e. independent of the minimal

separation δ). Then the bounds of Theorem 2 and Theorem 3 hold for {x◦j}nj=1 and {α◦
j}nj=1 in place of

{x̃j}nj=1 and {α̃j}nj=1.

Proof. By backward stability of Step 2, q◦ is the exact solution to the Hankel system

Hn(m̂[0 : 2n− 2]) · q◦ = −m̂[n : 2n− 1]

with moment vector m̂ ∈ C2n such that ∥m̂− m̃∥ = O(ϵM ). By backward stability of Step 3 (root finding),
x◦ are the exact roots of the polynomial q̂(z) such that ∥q◦ − q̂∥ = O(ϵM ). Using Proposition 7 and (59),
we have

berr1(q
◦, m̃) ⪅ ∥Cn(q

◦)†∥2∥m̃[n : 2n− 1] +Hn(m̃[0 : 2n− 2]) · q◦∥2
≤ ∥Cn(q

◦)†∥2∥ (m̃− m̂) [n : 2n− 1] + [Hn(m̃[0 : 2n− 2])−Hn(m̂[0 : 2n− 2])]q◦∥2
= O(ϵM ).

Since ϵM ⪅ ϵ, we conclude that x◦ are the exact roots of a polynomial q̄(m◦; z) where m◦ ∈ C2n with
∥m◦ − m̃∥ ≤ ∥m◦ − m̂∥ + ∥m̂ − m̃∥ = O(ϵM ). The latter implies that the bounds for |x◦j − xj | hold as
specified in Theorem 2. By backward stability of Step 4, there exist x∗ and m∗ such that α◦ is the exact
solution of the Vandermonde system V (x∗)α◦ = m∗ with x∗−x◦ = O(ϵM ) and ∥m∗−m̃[0 : n− 1]∥ = O(ϵM ).
Clearly x∗ are the exact roots of a polynomial with coefficients q∗ satisfying ∥q∗ − q̂∥ = O(ϵM ). But then
we also have ∥q∗ − q◦∥ = O(ϵM ) and by the same computation as above we conclude that x∗ are the exact
roots of a polynomial q̄(m̆; z) with ∥m̆− m̃∥ = O(ϵM ). Applying Theorem 3 completes the proof. □

8. Numerical results

The numerical performance of both PM and DPM has already been investigated in [20], suggesting their
optimality in the corresponding regime (respectively, as either δ ≪ 1

Ω or SRF ≫ 1 where SRF := 1
Ωδ ). In

particular, the results reported in [20] confirm the predictions of Theorem 2 and Theorem 3. Numerical
results in the multi-cluster setting for additional SR algorithms such as ESPRIT, MUSIC and Matrix Pencil
are available in, e.g., [23, 22, 8]. Here we complement the experiments in [20] by computing the backward
errors in each step of PM (cf. Theorem 6), implying that PM attains the optimal bounds in finite-precision
arithmetic as well (Figure 2).

In all experiments, we consider a clustered configuration with n = 3 nodes, where node j = 3 is isolated,
and construct the signal with random complex amplitudes (as in the model (2)), while adding random
bounded perturbations (noise) to the measurements. We measure the actual error amplification factors i.e.,
the condition numbers of this problem) of the nodes and amplitudes (cf. [8, Algorithm 3.3]):

Kx,j := ϵ−1Ω|xj − x̃j |, Kα,j := ϵ−1|αj − α̃j |,
21
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Figure 2. Classical Prony method - asymptotic optimality. For cluster nodes j = 1, 2, the node errors Ex,j =
|x̃j − xj | (left) scale is like δ2−2ℓ, while the amplitude errors Ea,j = |α̃j − αj | (middle) scale like δ1−2ℓ. For the
non-cluster node j = 3, both errors are bounded by a constant. Right: backward errors of each step, as specified
in Definition 4, are on the order of machine epsilon, implying numerical stability of PM according to Theorem 6.
Here ϵ = 10−15 in all experiments.

choosing ϵ, δ at random from a pre-defined range. Then, reconstruction of the signal is performed using one
of three methods: classical Prony Method, Decimated Prony Method and Matrix Pencil. For each method,
we compare the scaling of the condition numbers in two scenarios: projecting the recovered nodes on the
unit circle prior to recovering the amplitudes versus non-projecting them. All computations were done in
double-precision floating-point arithmetic.

As evident from Figure 1 (middle pane), the correlations between the errors in the coefficients of the
Prony polynomial q̄(z) are essential for obtaining the correct asymptotics for the errors in {xj}nj=1, as done
in the proof of Theorem 2. On the other hand, Figure 1 (right pane) does not appear to suggest that the
correlations between the errors in {xj}nj=1 have any influence on the accuracy of recovering the αj ’s. In
hindsight, the reason is clear: the proof of the estimates (49) (or (50)) does not require any correlations
between the different errors. In contrast, the improved analysis in Section 6.1 uses these correlations in

an essential way via the expression
∑ℓ1

ν=1 αν

[∏
r∈[ℓ1]\{ν}(xr − x̃j)

]
q̄(xν), resulting in the improved bound

(54). Thus, if we were to perturb the recovered nodes in random directions, Theorem 5 would no longer
be valid, and the bound (49) would be the “next best thing”. It turns out that a simple projection of
the complex nodes {x̃j}nj=1 to the unit circle prior to recovering the amplitudes αj provides the
required perturbation – Figure 3 demonstrates the loss of accuracy of the non-cluster node j = 3 when
projecting all nodes. Here we also plot the normalized “cluster discrepancy” V1/ϵ given by (51) measuring
the influcence between the different clusters, which should scale according to either (48) (second estimate)
in the projected case, or according to Theorem 5 in the non-projected case. Note that the multi-cluster
geometry is essential to observe such a behavior.

Interestingly, the cancellation phenomenon just demonstrated appears in other methods for SR which
are based on decoupling the recovery of {xj}nj=1 from that of {αj}nj=1. Performing the same projection
perturbation, the loss of accuracy can be seen for Decimated Prony method (DPM, Figure 4) and also the
Matrix Pencil (Figure 5). In all the above, if we project the nodes before computing the amplitudes, then the
amplitudes accuracy will deteriorate according to the estimate (49). Thus, non-projecting the nodes is
crucial for maintaining the accuracy of non-cluster amplitudes. While this phenomenon is perhaps
to be expected for DPM which still relies on PM, Matrix Pencil entails an eigenvalue decomposition, and
therefore it is a-priori, not obvious that cancellations should occur also there. We believe our insights can
help towards a complete analysis of Matrix Pencil and related methods in the multi-cluster geometry.
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Figure 3. Prony’s method: accuracy of amplitude recovery where the nodes are projected (left) or non-projected
(center) prior to recovering the amplitudes. Right panel: the corresponding normalized amplitude discrepancy
function V1/ϵ (see text). The results are consistent with the estimates (48) (projected) and Theorem 5 (non-
projected).

Node errors

Figure 4. Decimated Prony Method - asymptotic optimality. For cluster nodes j = 1, 2, the node amplification
factors Kx (left) scale like SRF2ℓ−2, and for the non-cluster node (j = 3) it is bounded by a constant. The
amplitude error amplification factors Ka for the non-cluster node with no projection (middle) are bounded by
a constant while with projection (right) they scale like SRFℓ−1. For the cluster nodes, both amplitude error
amplification factors scale like SRF2ℓ−1.

Node errors

Figure 5. Matrix Pencil’s asymptotic optimality. For cluster nodes, the node amplification factors Kx (left) scale
like SRF2ℓ−2, and for the non-cluster node (j=3) it is bounded by a constant. The amplitude error amplification
factors Ka for the non-cluster node with no projection (middle) are bounded by a constant while with projection
(right) they scale like SRFℓ−1 for large enough SRF. For the cluster nodes, both amplitude error amplification
factors scale like SRF2ℓ−1.

23



References

[1] J.R. Auton. Investigation of Procedures for Automatic Resonance Extraction from Noisy Transient
Electromagnetics Data. Volume III. Translation of Prony’s Original Paper and Bibliography of Prony’s
Method. Tech. rep. Effects Technology Inc., Santa Barbara, CA, 1981.

[2] Sven G. Bartels and Desmond J. Higham. “The Structured Sensitivity of Vandermonde-like Systems”.
In: Numerische Mathematik 62.1 (1992).

[3] D. Batenkov and Y. Yomdin. “On the Accuracy of Solving Confluent Prony Systems”. In: SIAM J.
Appl. Math. 73.1 (2013). doi: 10.1137/110836584.

[4] Dmitry Batenkov. “Complete Algebraic Reconstruction of Piecewise-Smooth Functions from Fourier
Data”. In: Mathematics of Computation 84.295 (2015). issn: 0025-5718, 1088-6842. doi: 10.1090/
S0025-5718-2015-02948-2.

[5] Dmitry Batenkov. “Accurate Solution of Near-Colliding Prony Systems via Decimation and Homotopy
Continuation”. In: Theoretical Computer Science. Symbolic Numeric Computation 681 (June 2017).
issn: 0304-3975. doi: 10.1016/j.tcs.2017.03.026.

[6] Dmitry Batenkov. “Stability and Super-Resolution of Generalized Spike Recovery”. In: Applied and
Computational Harmonic Analysis 45.2 (Sept. 2018). issn: 1063-5203. doi: 10.1016/j.acha.2016.09.
004.

[7] Dmitry Batenkov and Nuha Diab. “Super-Resolution of Generalized Spikes and Spectra of Confluent
Vandermonde Matrices”. In: Applied and Computational Harmonic Analysis 65 (July 1, 2023), pp. 181–
208. issn: 1063-5203. doi: 10.1016/j.acha.2023.03.002.

[8] Dmitry Batenkov, Gil Goldman, and Yosef Yomdin. “Super-Resolution of near-Colliding Point Sources”.
In: Information and Inference: A Journal of the IMA 10.2 (June 2021). doi: 10.1093/imaiai/iaaa005.

[9] Dmitry Batenkov and Yosef Yomdin. “Algebraic Signal Sampling, Gibbs Phenomenon and Prony-type
Systems”. In: Proceedings of the 10th International Conference on Sampling Theory and Applications
(SAMPTA). 2013.

[10] Dmitry Batenkov et al. “Conditioning of Partial Nonuniform Fourier Matrices with Clustered Nodes”.
In: SIAM Journal on Matrix Analysis and Applications 44.1 (Jan. 2020). issn: 0895-4798. doi: 10/
ggjwzb.

[11] John B Conway. Functions of one complex variable I. Springer Science & Business Media, 1978.
[12] Laurent Demanet and Nam Nguyen. “The Recoverability Limit for Superresolution via Sparsity”. In:

arXiv preprint arXiv:1502.01385 (2015). arXiv: 1502.01385.
[13] James W. Demmel. Applied Numerical Linear Algebra. SIAM, 1997.
[14] D.L. Donoho. “Superresolution via Sparsity Constraints”. In: SIAM Journal on Mathematical Analysis

23.5 (1992).
[15] Walter Gautschi. “Norm estimates for inverses of Vandermonde matrices”. In: Numerische Mathematik

23.4 (1974), pp. 337–347.
[16] Desmond J. Higham and Nicholas J. Higham. “Backward Error and Condition of Structured Linear

Systems”. In: SIAM Journal on Matrix Analysis and Applications 13.1 (Jan. 1992). issn: 0895-4798,
1095-7162. doi: 10.1137/0613014.

[17] N.J. Higham. Accuracy and Stability of Numerical Algorithms. 48. SIAM, 1996.
[18] Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press, 2012.
[19] M. H. Kahn et al. “On the Consistency of Prony’s Method and Related Algorithms”. In: Journal of

Computational and Graphical Statistics (1992).
[20] Rami Katz, Nuha Diab, and Dmitry Batenkov. “Decimated Prony’s Method for Stable Super-Resolution”.

In: IEEE Signal Processing Letters 30 (2023), pp. 1467–1471. issn: 1558-2361. doi: 10.1109/LSP.2023.
3324553.

[21] Harry B. Lee. “The Cramér-Rao Bound on Frequency Estimates of Signals Closely Spaced in Fre-
quency”. In: IEEE Transactions on Signal Processing 40.6 (1992).

[22] Weilin Li and Wenjing Liao. “Stable Super-Resolution Limit and Smallest Singular Value of Restricted
Fourier Matrices”. In: Applied and Computational Harmonic Analysis 51 (Mar. 2021). issn: 1063-5203.
doi: 10.1016/j.acha.2020.10.004.

24

https://doi.org/10.1137/110836584
https://doi.org/10.1090/S0025-5718-2015-02948-2
https://doi.org/10.1090/S0025-5718-2015-02948-2
https://doi.org/10.1016/j.tcs.2017.03.026
https://doi.org/10.1016/j.acha.2016.09.004
https://doi.org/10.1016/j.acha.2016.09.004
https://doi.org/10.1016/j.acha.2023.03.002
https://doi.org/10.1093/imaiai/iaaa005
https://doi.org/10/ggjwzb
https://doi.org/10/ggjwzb
https://arxiv.org/abs/1502.01385
https://doi.org/10.1137/0613014
https://doi.org/10.1109/LSP.2023.3324553
https://doi.org/10.1109/LSP.2023.3324553
https://doi.org/10.1016/j.acha.2020.10.004


[23] Weilin Li, Wenjing Liao, and Albert Fannjiang. “Super-Resolution Limit of the ESPRIT Algorithm”.
In: IEEE Transactions on Information Theory (2020). issn: 1557-9654. doi: 10/ggrnpw.

[24] Ping Liu and Hai Zhang. “A Mathematical Theory of the Computational Resolution Limit in One
Dimension”. In: Applied and Computational Harmonic Analysis 56 (Jan. 2022). issn: 1063-5203. doi:
10.1016/j.acha.2021.09.002.

[25] Y.I. Lyubich. “The Sylvester-Ramanujan System of Equations and The Complex Power Moment Prob-
lem”. In: The Ramanujan Journal 8.1 (2004).

[26] Ian Grant Macdonald. Symmetric functions and Hall polynomials. Oxford university press, 1998.
[27] Victor Pereyra and Godela Scherer. Exponential Data Fitting and Its Applications. Bentham Science

Publishers, Jan. 2010. isbn: 978-1-60805-048-2.
[28] R. Prony. “Essai Experimental et Analytique”. In: J. Ec. Polytech.(Paris) 2 (1795).
[29] R. Roy and T. Kailath. “ESPRIT-estimation of Signal Parameters via Rotational Invariance Tech-

niques”. In: IEEE Transactions on Acoustics, Speech, and Signal Processing 37.7 (July 1989). issn:
0096-3518. doi: 10/cwcdrc.

[30] M. Shahram and P. Milanfar. “On the Resolvability of Sinusoids with Nearby Frequencies in the
Presence of Noise”. In: IEEE Transactions on Signal Processing 53.7 (July 2005). issn: 1053-587X.
doi: 10.1109/TSP.2005.845492.

[31] Hans J. Stetter. Numerical Polynomial Algebra. Siam, 2004. url: http://www.google.com/books?hl=
en&lr=&id=bnBrsj_cA2gC&oi=fnd&pg=PR2&dq=stetter+numerical+polynomial+algebra&ots=QHVMS_
N6TA&sig=0o-YZNlg4JPRU-W7Jsub5sBFmTs (visited on 04/02/2014).

[32] Petre Stoica, Virginija Šimonyte, and Torsten Söderström. “On the Resolution Performance of Spectral
Analysis”. In: Signal Processing 44.2 (June 1995). issn: 0165-1684. doi: 10.1016/0165-1684(95)00021-
5.

[33] Ji-guang Sun. “Bounds for the Structured Backward Errors of Vandermonde Systems”. In: SIAM
Journal on Matrix Analysis and Applications 20.1 (Jan. 1998). issn: 0895-4798. doi: 10 . 1137 /
S0895479897314759.

[34] Michael L. Van Blaricum and Raj Mittra. “Problems and Solutions Associated with Prony’s Method
for Processing Transient Data.” In: IEEE Transactions on Antennas and Propagation AP-26.1 (1978).

Appendix A. Proofs - Section 4

A.1. Proof of Lemma 1. Expanding (11) via the first row we have

p̄(z) = (−1)n det (Hn)

zn + (−1)zn−1 det (Hn)
−1

det

 m0 m1 . . . mn−2 mn

...
...

...
...

...
mn−1 mn . . . m2n−3 m2n−1

(60)

+ · · ·+ (−1)n det (Hn)
−1

m1 m2 . . . mn

...
...

...
...

mn mn+1 . . . m2n−1


 .

Recall the system (4). Applying Craemer’s rule we get

p0 = (−1)n det (Hn)
−1

det

m1 m1 . . . mn

...
...

...
...

mn mn . . . m2n−1

 ,
...(61)

pn−1 = (−1) det (Hn)
−1

det

 m0 m1 . . . mn−2 mn

...
...

...
...

...
mn−1 mn . . . m2n−3 m2n−1

 .
Substituting (61) into (60) leads to (13). Identical computation for q̄(z) shows (14).
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A.2. Proof of Lemma 2. Recall that the coefficient of ϵκ in (18) is given by

θn+1−κ(z) = tr
(
adjn+1−κ(D)Cn+1−κ(G(z))

)
.

In the case κ = 0, we have Cn+1(G(z)) = det (G(z)) = p̄(z), whereas D ∈ R(n+1)×(n+1) implies, by
definition, that adjn+1(D) = 1. Therefore, θn+1(z) = p̄(z). In the case κ = n + 1, we have, by definition,
adj0(D) = det(D) and C0(G(z)) = 1, whence θ0(z) = det(D), as claimed.

Consider now the case 1 ≤ κ ≤ n. By definition, we have

tr
(
adjn+1−κ(D)Cn+1−κ(G(z))

)
=
∑

γ∈Qn+1
n+1−κ

∑
β∈Qn+1

n+1−κ

[
adjn+1−κ(D)

]
γ,β

[Cn+1−κ(G(z))]β,γ .

Fix any γ, β ∈ Qn+1
n+1−κ. Then,[

adjn+1−κ(D)
]
γ,β

= (−1)χ(γ,β) det (D [βc|γc]) .

where χ(γ, β) =
∑

i∈γ i+
∑

j∈β j and D [βc|γc] is the matrix obtained from D by selecting the rows not in
β and columns not in γ. Recall the structure of D in (17) and note that 1 /∈ β implies that D [βc|γc] has a
first row of zeros, whence det (D [βc|γc]) = 0. Therefore, in suffices to consider only β ∈ Qn+1−κ such that
1 ∈ β. In the case κ = n, we thus obtain β = (1) and γ = (i), 1 ≤ i ≤ n+ 1, whence

θ1(z) =
∑n+1

i=1 [adj1(D)]i,1 [C1(G(z))]1,i =
∑n+1

i=1 [adj(D)]i,1 [G(z)]1,i
=
∑n+1

i=1 [adj(D)]i,1 z
i−1

as required. Finally, consider the case 1 ≤ κ ≤ n − 1. Recall the notation (19) corresponding to each
γ = (i1, . . . , in+1−κ) and β = (1, j1, . . . , jn−κ). By definition of the multiplicative compound and the
notations (19)

[Cn+1−κ(G(z))]β,γ = det


[G(z)]1,i1 [G(z)]1,i2 . . . [G(z)]1,in+1−κ

[G(z)]j1,i1 [G(z)]j1,i2 . . . [G(z)]j1,in+1−κ

...
[G(z)]jn−κ,i1 [G(z)]jn−κ,i2 . . . [G(z)]jn−κ,in+1−κ



= det


zi1−1 zi2−1 . . . zin+κ−1−1

m(j1−2)+(i1−1) m(j1−2)+(i2−1) . . . m(j1−2)+(in+1−κ−1)

...
m(jn−κ−2)+(i1−1) m(jn−κ−2)+(i2−1) . . . m(jn−κ−2)+(in+1−κ−1)



= det


za za+k1 . . . za+kn−κ

mb mb+k1 . . . mb+kn−κ

mb+l1 mb+l1+k1 . . . mb+l1+kn−κ

...
mb+ln−κ−1

mb+ln−κ−1+k1
. . . mb+ln−κ−1+kn−κ

 = Γβ,γ(z),

whence

θn+1−κ(z) =
∑

γ∈Qn+1
n+1−κ

∑
β∈Qn+1

n+1−κ:1∈β

[
adjn+1−κ(D)

]
γ,β

Γβ,γ(z)

as desired.

A.3. Proof of Theorem 4. Recall that the algebraic moments are given by

ms =

n∑
j=1

αjx
s
j .
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Employing the representation of Γβ,γ in Lemma 2 we have

Γβ,γ(z) = det


za za+k1 . . . za+kn−κ

mb mb+k1
. . . mb+kn−κ

mb+l1 mb+l1+k1 . . . mb+l1+kn−κ

...
mb+ln−κ−1

mb+ln−κ−1+k1
. . . mb+ln−κ−1+kn−κ



= det


za za+k1 . . . za+kn−κ∑n

ω=1 αωx
b
ω

∑n
ω=1 αωx

b+k1
ω . . .

∑n
ω=1 αωx

b+kn−κ
ω∑n

ω=1 αωx
b+l1
ω

∑n
ω=1 αωx

b+l1+k1
ω . . .

∑n
ω=1 αωx

b+l1+kn−κ
ω

...∑n
ω=1 αωx

b+ln−κ−1
ω

∑n
ω=1 αωx

b+ln−κ−1+k1
ω . . .

∑n
ω=1 αωx

b+ln−κ−1+kn−κ
ω



=
∑n

ω1=1 αω1
det


za za+k1 . . . za+kn−κ

xbω1
xb+k1
ω1

. . . x
b+kn−κ
ω1∑n

ω=1 αωx
b+l1
ω

∑n
ω=1 αωx

b+l1+k1
ω . . .

∑n
ω=1 αωx

b+l1+kn−κ
ω

...∑n
ω=1 αωx

b+ln−κ−1
ω

∑n
ω=1 αωx

b+ln−κ−1+k1
ω . . .

∑n
ω=1 αωx

b+ln−κ−1+kn−κ
ω



= · · · =
∑n

ω1,...,ωn−κ=1

(∏n−κ
s=1 αωs

)
det


za za+k1 . . . za+kn−κ

xbω1
xb+k1
ω1

. . . x
b+kn−κ
ω1

xb+l1
ω2

xb+l1+k1
ω2

. . . x
b+l1+kn−κ
ω2

...
x
b+ln−κ−1
ωn−κ x

b+ln−κ−1+k1
ωn−κ . . . x

b+ln−κ−1+kn−κ
ωn−κ

 .

Consider a single summand in the latter sum. We have

(∏n−κ
s=1 αωs

)
det


za za+k1 . . . za+kn−κ

xbω1
xb+k1
ω1

. . . x
b+kn−κ
ω1

xb+l1
ω2

xb+l1+k1
ω2

. . . x
b+l1+kn−κ
ω2

...
x
b+ln−κ−1
ωn−κ x

b+ln−κ−1+k1
ωn−κ . . . x

b+ln−κ−1+kn−κ
ωn−κ



=
(∏n−κ

s=1 αωs

)
zaxbω1

xb+l1
ω2

. . . x
b+ln−κ−1
ωn−κ det


1 zk1 . . . zkn−κ

1 xk1
ω1

. . . x
kn−κ
ω1

1 xk1
ω2

. . . x
kn−κ
ω2

...
1 xk1

ωn−κ
. . . x

kn−κ
ωn−κ

 .

Recall that (19) implies that
1 ≤ k1 < · · · < kn−κ.

Setting
λ1 = kn−κ − n+ κ, . . . , λn−κ = k1 − 1, λn−κ+1 = 0

we see that 0 ≤ λn−κ+1 ≤ λn−κ ≤ · · · ≤ λ1. Thus, considering λ := (λ1, . . . , λn−κ+1) as an integer partition
[26, Chapter 1], we have that the considered summand equals

(62)

(∏n−κ
s=1 αωs

)
zaxbω1

xb+l1
ω2

. . . x
b+ln−κ−1
ωn−κ

(∏n−κ
s=1 (xωs

− z)
)

×
(∏

1≤s<t≤n−κ(xωt
− xωs

)
)
sλ
(
z, xω1 , . . . , xωn−κ

)
where sλ

(
z, xω1 , . . . , xωn−κ

)
is the Schur polynomial for the partition λ and in the variables z, xω1 , . . . , xωn−κ

[26, Chapter 3]. Note that the use of Schur polynomials allowed us to extract the Vandermonde determinant
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on
{
z, xω1 , . . . , xωn−κ

}
. To obtain an additional copy of the Vandermonde determinant, we sum over the

terms (62) to obtain the following representation of Γβ,γ

Γβ,γ(z) =
∑n

ω1,...,ωn−κ=1

{(∏n−κ
s=1 αωs

)
zaxbω1

xb+l1
ω2

. . . x
b+ln−κ−1
ωn−κ

×
(∏n−κ

s=1 (xωs − z)
)(∏

1≤s<t≤n−κ(xωt − xωs)
)
sλ
(
z, xω1 , . . . , xωn−κ

)}
Considering the latter representation we see that for selection of ω1, . . . , ωn−κ ∈ [n] such that there exist
some 1 ≤ s < t ≤ n − κ with ωs = ωt the corresponding summand is zero. Hence, taking the symmetry of
Schur polynomials [26, Chapter 3] into account, we obtain

(63)
Γβ,γ(z) =

∑
(ω1,...,ωn−κ)∈Qn

n−κ

{(∏n−κ
s=1 αωs

)(∏n−κ
s=1 (xωs

− z)
)

×
(∏

1≤s<t≤n−κ(xωt − xωs)
)
sλ
(
z, xω1 , . . . , xωn−κ

)
zaψλ,ω1,...,ωn−κ

}
where

(64)

ψλ,ω1,...,ωn−κ
=
∑

σ∈Sn−κ
(−1)sgn(σ)xbωσ(1)

xb+l1
ωσ(2)

. . . x
b+ln−κ−1
ωσ(n−κ)

= det


xbω1

. . . xbωn−κ

xb+l1
ω1

. . . xb+l1
ωn−κ

...
x
b+ln−κ−1
ω1 . . . x

b+ln−κ−1
ωn−κ

 =
(∏n−κ

j=1 x
b
ωj

)
det


1 . . . 1
xl1ω1

. . . xl1ωn−κ

...
x
ln−κ−1
ω1 . . . x

ln−κ−1
ωn−κ


and Sn−κ denotes the symmetric group on [n − κ]. In particular, if there exist 1 ≤ s < t ≤ n − κ such

that xωs
= xωt

, then ψλ,ω1,...,ωn−κ
= 0. Thus, ψλ,ω1,...,ωn−κ

is divisible by
∏

1≤s<t≤n−κ(xωt
− xωs

). In fact,
introducing the partition

µn−κ = 0, µn−κ−1 = l1 − 1, . . . , µ1 = ln−κ−1 − (n− κ− 1)

we have that µ1 ≥ · · · ≥ µn−κ, and the integer partition µ := (µ1, . . . , µn−κ) satisfies

det


1 . . . 1
xl1ω1

. . . xl1ωn−κ

...
x
ln−κ−1
ω1 . . . x

ln−κ−1
ωn−κ

 = sµ(xω1
, . . . , xωn−κ

) ·
(∏

1≤s<t≤n−κ(xωt
− xωs

)
)
,

whence we conclude that

Γβ,γ(z) =
∑

(ω1,...,ωn−κ)∈Qn
n−κ

{(∏n−κ
s=1 (xωs

− z)
)

×
(∏

1≤s<t≤n−κ(xωt − xωs)
2
)
ϕβ,γ(ω1,...,ωn−κ)

(z)
}

where

(65) ϕβ,γ(ω1,...,ωn−κ)
(z) =

(∏n−κ
s=1 αωs

)
sλ
(
z, xω1

, . . . , xωn−κ

)
sµ(xω1

, . . . , xωn−κ
)za
(∏n−κ

j=1 x
b
ωj

)
is a polynomial in

{
z, wω1 , . . . , xωn−κ

}
.

Appendix B. Proofs - Section 5

B.1. Proof of Lemma 4. We have

P(ω1,...,ωn−κ) = |xωs − z|
(∏

1≤t≤n−κ,t̸=s |xωt − xωs |2
)
P(ω1,...,ωs−1,ωs+1,...,ωn−κ)

We consider three cases. First, let ωs = j∗. Then, recalling that xj∗ has j∗ ∈ Cµ with ℓµ nodes,

|xωs
− z|

 ∏
1≤t≤n−κ,t̸=s

|xωt
− xωs

|2
 = ρ∗

 ∏
1≤t≤n−κ,ωt ̸=j∗

|xωt
− xj∗ |2

 ⪆ ρ∗δ
2(ℓµ−1).

Indeed, when choosing elements xωt so that the product is smallest, we can either choose ωt ∈ Cµ \ {j∗},
which contributes |xωt

− xj∗ |2 = δ2 < 1 to the product, or we can choose ωt /∈ Cµ, which contributes
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|xωt − xj∗ |2 ≥ T 2 = O(1). Thus, the smallest product obtainable is achieved by choosing all indices in
Cµ \ {j∗}.

If ωs ∈ Cµ \ {j∗} then similar reasoning leads to

|xωs
− z|

 ∏
1≤t≤n−κ,t̸=s

|xωt
− xωs

|2
 ⪆ (δ − ρ∗)δ

2(ℓµ−1).

Indeed, here |xωs
− z| ≥ |xωs

− xj∗ | − |z − xj∗ | ≥ δ − ρ∗, whereas the second term follows by the same
arguments as above.

Finally, if ωs /∈ Cµ then

|xωs
− z|

 ∏
1≤t≤n−κ,t̸=s

|xωt
− xωs

|2
 ⪆ (T − ρ∗) δ

2(ℓ∗−1).

Indeed, note that in this case |xωs
− z| ≥ |xωs

− xj∗ | − |z − xj∗ | ≥ T − ρ∗, whereas for the product, the
smallest result is obtained when xωs

belongs to the largest cluster, whereas
{
xω1

, . . . xωs−1
, xωs+1

, . . . , xωn−κ

}
are chosen first as all remaining elements of this cluster, and the remaining elements in different clusters (the
latter contribute O(1) to the product). This shows (35).

This shows (35). Setting ϵ = ϵ̄δ2ℓ∗−1 and ρ∗ = ρ̄∗δ
2(ℓ∗−ℓµ)+1, where ϵ̄ and ρ̄∗ are independent of δ, and

taking into account δ < 1 and ρ̄∗ < 1
3 min(1, T ), it follows that

ρ∗δ
2(ℓµ−1)

ϵ = ρ̄∗δ
2ℓ∗−1

ϵ̄δ2ℓ∗−1 = ρ̄∗
ϵ̄ ,

(δ−ρ∗)δ
2(ℓµ−1)

ϵ ≥
(
1
δ

)2(ℓ∗−ℓµ) 1−ρ̄∗δ
2(ℓ∗−ℓµ)

ϵ̄ ≥
(
1
δ

)2(ℓ∗−ℓµ) 1−ρ̄∗
ϵ̄ ≥ ρ̄∗

ϵ̄ ,

(T−ρ∗)δ
2(ℓ∗−1)

ϵ ≥ 1
δ
T−ρ̄∗

ϵ̄ ≥ ρ̄∗
ϵ̄ .

Hence, the rightmost term is the smallest of the lower bounds which leads to (36).

B.2. Proof of Proposition 4. Recall that ϵ = ϵ̄δ2ℓ∗−1 and let m ≤ n. Consider the following function and
set of constraints

gm,n(ϖ1, . . . , ϖm) =
∑m

s=1ϖ
2
s − n,

(ϖ1, . . . , ϖm)⊤ ∈ Am,n := {y ∈ Rm |
∑m

s=1 ys = n, ys ≥ 1 ∀s ∈ [m]} .

Since Am,n is compact (m − 1 dimensional simplex in Rm), gm achieves its extrema in Am,n. We begin by
finding extremum candidates in the interior of Am,n. Employing Largange multipliers with the auxiliary
parameter η, we obtain the following first order conditions

m∑
s=1

ϖs = n, 2ϖs = η, s ∈ [m],

whence we get the candidate L⊤
m,n =

(
n
m , . . . ,

n
m

)
. Next, consider the boundary ∂Am,n. It can be easily

seen that it is characterized by exactly k of the entries of (ℓ1, . . . , ℓm) being equal to 1 for some 1 ≤ k ≤ m.
By symmetry we can assume that ℓm−k+1 = · · · = ℓm = 1, whereas ℓ1, . . . , ℓm−k > 1. Moreover, in this
case gm,n(ℓ1, . . . , ℓm) = gm−k,n−k(ℓ1, . . . , ℓm−k) with (ℓ1, . . . , ℓm−k)

⊤ in the relative interior of Am−k,n−k.
Employing the same arguments as above we get the candidate L⊤

m−k,n−k =
(

n−k
m−k , . . . ,

n−k
m−k , 1, . . . , 1

)
, k < m

and L⊤
0,0 = (1, . . . , 1), k = m = n. Substitution into the function gives

(66) gm,n

(
L⊤
m−k,n−k

)
=

{
(n− k)n−m

m−k , 0 ≤ k ≤ m− 1,

0, k = m = n
.

A simple comparison shows that

(67) 0 = gm,n

(
L⊤
0,0

)
< gm,n

(
L⊤
m−1,n−1

)
< · · · < gm,n

(
L⊤
1,n−m+1

)
.

I.e., taking only a single ℓi to be different from 1 maximizes gm,n.
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Now, consider

(68)
1
ϵ̄n

ϵn

δn(n−1)+2ℓ∗−ℓµ−2ϱ

(28)
= δn(2ℓ∗−1)−2ℓ∗+ℓµ−

∑
s∈[ζ] ℓs(ℓs−1)

= δn(2ℓ∗−1)−2ℓ∗+ℓµ−gζ,n(ℓ1,...,ℓζ).

We now use the previous maximization of gζ,n to show that the power of δ on the right-hand side is non-
negative, whence the right-hand side is upper bounded by 1 (recall that δ < 1). For the case of ζ = n (i.e.,
when (ℓ1, . . . , ℓn) = LT

0,0), we have that ℓ∗ = 1 and (67) yields n(2ℓ∗−1)−2ℓ∗+ℓµ−gζ,n(ℓ1, . . . , ℓζ) = n−1 ≥ 1,
whence the result follows. Assume that we have ζ < n and exactly k < ζ singleton clusters. In this case
ℓ∗ = ⌈n−k

ζ−k ⌉. Writing n−k
ζ−k = m+ r where m ∈ N and 0 ≤ r < 1, we have

n(2ℓ∗ − 1)− 2ℓ∗ + ℓµ − gζ,n(ℓ1, . . . , ℓζ)
(66),(67)

≥ n(2m+ 1)− 2m− 2 + ℓµ − (n− k)(m+ r)
= (n+ k − 2)m+ n(1− r) + kr + ℓµ − 2.

Since n ≥ 2 and k ≥ 0, if ℓµ ≥ 2, the latter expression is clearly nonnegative. If ℓµ = 1, then we must have
either n ≥ 3 or k ≥ 1, whence the expression is also nonnegative (indeed, k = 0 and n = 2 imply a clustered
configuration of 2 nodes with no singleton clusters, which contradicts ℓµ = 1). The proof is concluded.

B.3. Proof of Lemma 5. Fixing (ω1, . . . , ωn−1) ∈ Qn
n−1 we consider a single summand of the form

ϵP(ω1, . . . , ωn−1). We derive an upper bound on

(69) ϵP(ω1,...,ωn−1) = ϵ

(
n−1∏
s=1

|xωs
− z|

) ∏
1≤s<t≤n−1

|xωt
− xωs

|2


up to constants that are independent of δ. Recall that |z− xj∗ | = ρ∗, where j∗ ∈ Cµ with card(Cµ) = ℓµ. To
upper bound

∏n−1
s=1 |xωs

− z|, note that exactly one of the following holds:
• Case 1: ωs ̸= j∗ for all s ∈ [n− 1]. In this case

n−1∏
s=1

|xωs − z| =

 ∏
ωs /∈Cµ

|xωs − z|

 ∏
ωs∈Cµ\{j∗}

|xωs − z|


≤ (ρ∗ + ηT )

n−ℓµ (ρ∗ + τδ)
ℓµ−1

.(70)

• Case 2: ωs ̸= t for some t ∈ Cµ \ {j∗}. In this case

n−1∏
s=1

|xωs − z| =

 ∏
ωs /∈Cn

|xωs − z|

 ∏
ωs∈Cµ\{r}

|xωs − z|


≤ (ρ∗ + ηT )

n−ℓµ ρ∗ (ρ∗ + τδ)
ℓµ−2

.(71)

• Case 3: ωs ̸= t for some t /∈ Cµ. In this case

n−1∏
s=1

|xωs
− z| =

 ∏
ωs /∈Cµ∪{t}

|xωs
− z|

 ∏
ωs∈Cµ

|xωs
− z|


≤ (ρ∗ + ηT )

n−ℓµ−1
ρ∗ (ρ∗ + τδ)

ℓµ−1
.(72)

To upper bound
∏

1≤s<t≤n−1 |xωt − xωs |2, consider an arbitrary ι ∈ [ζ] and b ∈ Cι. Then,

(73) ϖι =

(
n− 1

2

)
−

∑
s∈[ζ]\{ι}

(
ℓs
2

)
−
(
ℓι − 1

2

)
is the number of ways to choose two nodes which differ from xb and do not belong to the same cluster. Note
that the subscript ι is added to take into account that the node xb with b ∈ Cι is removed from the nodal
set. Let 1 ≤ s < t ≤ n− 1 and consider the nodes xωt and xωs . Exactly one of the following options holds:
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(1) ωt, ωs ∈ Cι′ for some ι′ ̸= ι, (2) ωt, ωs ∈ Cι \ {b} and (3) ωs ∈ Cι′ , ωt ∈ Cι′′ where ι′, ι′′ ∈ [ζ], ι′ ̸= ι′′.
Hence, for ι ∈ [ζ] and b ∈ Cι, the following bound is obtained

(74)
∏

1≤s<t≤n−1

|xωt − xωs |2 ≤ (ηT )
2ϖι (τδ)

(n−1)(n−2)−2ϖι .

Using (69)-(74), we have the following three cases:
• Case 1: ωs ̸= j∗ for all s ∈ [n− 1]. Here xj∗ is removed from the nodal set, whence ι = µ in (73) and

(75) ϵP(ω1,...,ωn−1) ≤ ϵ (ηT )
2ϖµ (τδ)

(n−1)(n−2)−2ϖµ (ρ∗ + ηT )
n−ℓµ (ρ∗ + τδ)

ℓµ−1

• Case 2: ωs ̸= b for some b ∈ Cµ \ {j∗}, whence ι = µ in (73) and

(76) ϵP(ω1,...,ωn−1) ≤ ϵ (ηT )
2ϖµ (τδ)

(n−1)(n−2)−2ϖµ (ρ∗ + ηT )
n−ℓµ ρ∗ (ρ∗ + τδ)

ℓµ−2

• Case 3: ωs ̸= b for some b ∈ Cι, ι ̸= µ. In this case we have ι ̸= µ in (73) and

(77) ϵP(ω1,...,ωn−1) ≤ ϵ (ηT )
2ϖι (τδ)

(n−1)(n−2)−2ϖι (ρ∗ + ηT )
n−ℓµ−1

ρ∗ (ρ∗ + τδ)
ℓµ−1

Now, recall (28) and (73) and note that the following relation holds

(78) (n− 1)(n− 2)− 2ϖι = n(n− 1)− 2ϱ− 2(ℓι − 1).

Now, we consider the three cases (75)-(77) separately:
• Case 1:

ϵP(ω1,...,ωn−1)

ϵ̄δn(n−1)+2ℓ∗−ℓµ−2ϱ ≤ (ηT )
2ϖµ τ (n−1)(n−2)−2ϖµ (ρ∗ + ηT )

n−ℓµ δ2ℓ∗−1δ(n−1)(n−2)−2ϖµ (ρ∗+τδ)ℓµ−1

δn(n−1)+2ℓ∗−ℓµ−2ϱ

(78)
⪅ δ2ℓµ−2−2(ℓµ−1) = 1.

• Case 2:
ϵP(ω1,...,ωn−1)

ϵ̄δn(n−1)+2ℓ∗−ℓµ−2ϱ ≤ (ηT )
2ϖµ τ (n−1)(n−2)−2ϖµ (ρ∗ + ηT )

n−ℓµ δ2ℓ∗−1δ(n−1)(n−2)−2ϖµρ∗(ρ∗+τδ)ℓµ−2

δn(n−1)+2ℓ∗−ℓµ−2ϱ

(78)
⪅ ρ̄∗δ

2(ℓ∗−ℓµ).

• Case 3:
ϵP(ω1,...,ωn−1)

ϵ̄δn(n−1)+2ℓ∗−ℓµ−2ϱ ≤ (ηT )
2ϖι τ (n−1)(n−2)−2ϖι (ρ∗ + ηT )

n−ℓµ−1 δ2ℓ∗−1δ(n−1)(n−2)−2ϖιρ∗(ρ∗+τδ)ℓµ−1

δn(n−1)+2ℓ∗−ℓµ−2ϱ

(78)
⪅ ρ̄∗δ

2(ℓ∗−ℓι)+1.

This concludes the proof.

Appendix C. Proofs - Section 6

C.1. Proof of Proposition 5. Recall (46) and (47) and consider the product
∏

b ̸=j
1

|x̃j−x̃b| . Given b ̸=
j, b ∈ Cs, we have

|x̃j − x̃b| ≥ |xj − xb| − ρt − ρs ≥

{
T − ρt − ρs, s ̸= t

δ − 2ρt, s = t
≥

{(
1− 2

3τ

)
T, s ̸= t

δ
3 , s = t

.

Therefore, ∏
b̸=j

1

|x̃j − x̃b|
≤
(
3

δ

)ℓt−1 [(
1− 2

3τ

)
T

]−n+ℓt−1

⪅
1

δℓt−1

implying, together with (46) and (47), that for any a ∈ {0, . . . , n− 1}

|ℓ̃j,a| ⪅
∏
b̸=j

1

|x̃j − x̃b|
⪅

1

δℓt−1
.

Since ∥be∥∞ < ϵ, the latter estimate gives the desired result.
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Remark 8. Note that ℓ̃j,a is of the form ℓ̃j,a =
(∏

b̸=j
1

x̃j−x̃b

)
sj,a(x̃1, . . . , x̃n), where sj,a(x̃1, . . . , x̃n) is

some symmetric polynomial in x̃1, . . . , x̃n. Since the perturbed nodes are bounded in a closed neighborhood
of S1, as follows from Theorem 2, we have sj,a(x̃1, . . . , x̃n) = O(1) for all j ∈ [n] and a ∈ [n− 1].

C.2. Proof of Proposition 6. Consider first the case s = j. We have[
Ṽ −1V

]
j,j

=
∏

b∈[n]\{j}

[
xj − x̃b
x̃j − x̃b

]
=

∏
b∈[n]\{j}

[
1 +

xj − x̃j
x̃j − x̃b

]

=

 ∏
b∈Ct\{j}

[
1 +

xj − x̃j
x̃j − x̃b

]∏
b/∈Ct

[
1 +

xj − x̃j
x̃j − x̃b

]
=

(
1 +

ℓt−1∑
ν=1

[xj − x̃j ]
ν
λ(1),jν

)(
1 +

n−ℓt∑
ν=1

[xj − x̃j ]
ν
λ(2),jν

)
(79)

where

λ(1),jν =
∑

B⊆Ct\{j}, |B|=ν

∏
b∈B

1

|x̃j − x̃b|
⪅

1

δν
, λ(2),jν =

∑
B⊆[n]\Ct, |B|=ν

∏
b∈B

1

|x̃j − x̃b|
= O(1).

Note that ρj = ρ̄jδ
2(ℓ∗−ℓt)+1 implies ρj

δ ≤ ρ̄j <
1
3 , whence∣∣∣∣∣

ℓt−1∑
ν=1

[xj − x̃j ]
ν
λ(1),jν

∣∣∣∣∣ ⪅
ℓt−1∑
ν=1

(ρj
δ

)ν
⪅
ρj
δ
,∣∣∣∣∣

n−ℓt∑
ν=1

[xj − x̃j ]
ν
λ(2),jν

∣∣∣∣∣ ⪅
n−ℓt∑
ν=1

ρνj ⪅ ρj ,

which, together with (79), gives ∣∣∣∣[Ṽ −1V
]
j,j

− 1

∣∣∣∣ ⪅ ρj +
ρj
δ

⪅
ϵ

δ2ℓt−1
.

Now, let s ̸= j, s ∈ Ct. Then,∣∣∣∣[Ṽ −1V
]
j,s

∣∣∣∣ = ∏
b∈[n]\{j}

∣∣∣∣xs − x̃b
x̃j − x̃b

∣∣∣∣ ⪅ 1

δℓt−1
|xs − x̃s|

∏
b∈Ct\{s,j}

|xs − x̃b|

⪅
1

δℓt−1
ρs

 ∏
b∈C\{s,j}

(τδ + ρb)

 ⪅
ρs
δ

⪅
ϵ

δ2ℓt−1
.

In the last steps we used the fact that given any b ∈ Ct \ {s, j} we have that ρb = ρ̄bδ
2(ℓ∗−ℓt)+1, which allows

to extract δ from each of the terms in the product and that s ∈ Ct, whence ρs ⪅ ϵ
δ2ℓt−2 .

Finally, let s ∈ Ca, a ̸= t. By similar arguments, we obtain∣∣∣∣[Ṽ −1V
]
j,s

∣∣∣∣ = ∏
b∈[n]\{j}

∣∣∣∣xs − x̃b
x̃j − x̃b

∣∣∣∣ ⪅ 1

δℓt−1
|xs − x̃s|

∏
b∈Ca\{s}

|xs − x̃b|

⪅
1

δℓt−1
ρs

 ∏
b∈Ca\{s}

(τδ + ρb)

 ⪅
1

δℓt−ℓa
ρs ⪅

ϵ

δℓa+ℓt−2
.

Remark 9. For simplicity, the analysis above assumed ℓs ≥ 2 for all s ∈ [ζ]. For the case of an isolated
node C1 = {x1} , ℓ1 = 1 (without loss of generality), the analysis is modified slightly as follows: First, (79)
is written as [

Ṽ −1V
]
1,1

=
∏
k≥2

[
1 +

x1 − x̃1
x̃1 − x̃b

]
= 1 +

n−1∑
ν=1

[x1 − x̃1]
ν
λ(2),1ν
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with λ(2),1ν given above. Hence, ∣∣∣∣[Ṽ −1V
]
1,1

− 1

∣∣∣∣ ⪅ ρ1 ⪅ ϵ.

Second, for s ̸= 1, s ∈ Ca, we further have∣∣∣∣[Ṽ −1V
]
1,s

∣∣∣∣ = ∏
k≥2

∣∣∣∣xs − x̃k
x̃1 − x̃k

∣∣∣∣ ⪅ |xs − x̃s|
∏

k∈Ca\{s}

|xs − x̃k|

⪅ ρs (ρs + τδ)
ℓa−1 ⪅ δℓa−1ρs ⪅

ϵ

δℓa−1
.

33


	1. Introduction
	1.1. Main contributions
	1.2. Towards optimal SR
	1.3. Organization of the paper
	1.4. Notation
	1.5. Acknowledgements

	2. Super-resolution and Prony's method
	2.1. Optimal super-resolution
	2.2. Prony's method
	2.3. (Apparent) instability of Prony's method

	3. Main results
	3.1. Proof outline

	4. Preliminary results
	4.1. First-order asymptotic constant

	5. Proof of Theorem 2
	6. Proof of Theorem 3
	6.1. An improved bound on the amplitude error

	7. Stability in finite precision computations
	8. Numerical results
	References
	Appendix A. Proofs - Section 4
	A.1. Proof of Lemma 1
	A.2. Proof of Lemma 2
	A.3. Proof of Theorem 4

	Appendix B. Proofs - Section 5
	B.1. Proof of Lemma 4
	B.2. Proof of Proposition 4
	B.3. Proof of Lemma 5

	Appendix C. Proofs - Section 6
	C.1. Proof of Proposition 5
	C.2. Proof of Proposition 6


