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Abstract— Given a reaction-diffusion equation with unknown
right-hand side, we consider a nonlinear inverse problem
of estimating the associated leading eigenvalues and initial
condition modes from a finite number of non-local noisy
measurements. We define a reconstruction criterion and, for
a small enough noise, we prove the existence and uniqueness of
the desired approximation and derive closed-form expressions
for the first-order condition numbers, as well as bounds for their
asymptotic behavior in a regime when the number of measured
samples is fixed and the inter-sampling interval length tends to
infinity. When computing the sought estimates numerically, our
simulations show that the exponential fitting algorithm ESPRIT
is first-order optimal, as its first-order condition numbers have
the same asymptotic behavior as the analytic condition numbers
in the considered regime.

Index Terms— Identification, Distributed parameter systems,
Data-driven control, Estimation

I. INTRODUCTION AND CONSIDERED MODEL

Reaction-diffusion equations (RDEs) are widely used to
model phenomena in physics and engineering, including
magnetized plasma, flame front propagation and chemical
processes [1], [2]. RDEs belong to the class of distributed
parameters systems, and their control and observation have
been investigated over the last decades, see e.g. [3], [4], [5].
In particular, observation and control of RDEs through modal
decomposition was employed e.g. in [6], [7], [8]. Almost all
existing control and observation techniques assume explicit
knowledge of the spatial operator of the system or of the
eigenvalue/eigenfunction pairs corresponding to its modes.

Identification of unknown parameters in RDEs is a chal-
lenging problem, which has been mostly studied in an
adaptive estimation framework [9], [10]. Adaptive estimation
relies on a persistency of excitation assumption, which may
be difficult to verify in practice. It also requires continuous-
time measurements of the state and has not been generalized
so far to a sampled-data framework and/or to estimation from
a finite number of measurements. Finally, translation of these
theoretical methods into tractable and efficient algorithms
is, to the best of our knowledge, still an open problem.
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Other identification methods, which are accompanied by
sound numerical algorithms, have been derived in the field
of inverse problems [11], [12], [13]. These approaches treat
the problem of recovering the spatial operator of the sys-
tem under the assumption of complete knowledge of its
eigenvalues. However, this assumption is non-realistic from
a control theory perspective, since often only discrete-time
measurements of the state are available. Hence, constructive
and implementable data-driven identification techniques for
reaction-diffusion equations are still missing.

We consider the 1D reaction-diffusion equation

zt(x, t) = (p(x)zx(x, t))x +q(x)z(x, t), z(0, t) = z(1, t) = 0, (1)

subject to non-local measurements

y(t) =
∫ 1

0
c(x)z(x, t)dx ∈ R, t ≥ 0. (2)

Here c ∈ L2(0,1) is partially known (see Assumption
1.2 in Section III), x ∈ (0,1) and z(x, t) ∈ R. The smooth
functions p(x) and q(x) and the initial condition z(·,0) are
assumed unknown. The system (1) has an associated se-
quence of eigenvalues {λn}∞

n=1 with eigenfunctions {ψn}∞

n=1
(see Section II). The identification objective considered in
this paper is the approximation of the leading eigenvalues
{λn}N0

n=1 , N0 ∈ N, and the initial condition modes from the
available measurements, subject to appropriate assumptions
(see Section III). The contribution of the paper is as follows:

1) Differently from existing adaptive estimation algo-
rithms, which require measurements of the form y(t),
t ≥ 0, or {y(sk)}∞

k=1 with limk→∞ sk = ∞, we assume
that the measurements (2) are available at finitely many
time steps. Moreover, c in (2) is not a perfect filter
(meaning, c /∈ span{ψn}N1

n=1) and introduces structured
noise into the measurements, with intensity ε , which
emanates from measuring ‘undesirable’ system modes.

2) We define a reconstruction criterion in the presence of
structured noise, and prove the existence and unique-
ness of the associated approximation, provided ε > 0
is not too large (see Theorem 1).

3) We introduce first-order condition numbers, in (16),
which describe how the ε-noise is amplified in the
reconstruction errors, and provide explicit expressions
for these condition numbers, as well their asymptotic
behavior in the specific regime described in (17).

4) Finally, we consider the problem of numerically com-
puting the approximations. The parameter identifica-
tion problem turns out to be a special case of expo-
nential fitting, a classical topic in data analysis with
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numerous applications [14], [15], [16]. Our numer-
ical simulations show that the well-known ESPRIT
algorithm [17] achieves first-order optimality, meaning
that the first-order condition numbers of the ESPRIT
algorithm exhibit the same asymptotic behaviour as the
analytic condition numbers, in the considered regime.

We believe that our results pave the way towards new
directions in data-driven identification of RDEs.

II. PRELIMINARIES

Consider the system (1), where the unknown smooth
functions satisfy the bounds

0 < p ≤ p(x)≤ p < ∞, q ≤ q(x)≤ q, x ∈ [0,1]. (3)

The constants p,q, p,q are assumed to be unknown. We
denote by H 2(0,1) (resp. H 1

0 (0,1)) the Sobolev space
of functions f defined on [0,1] that are twice (resp. once)
weakly differentiable with f ′′ ∈ L2(0,1) (resp. f ′ ∈ L2(0,1)
and f (0) = f (1) = 0). Define the operator A

[A h] (x) =−(p(x)h′(x))′−q(x)h(x), x ∈ (0,1),
Dom(A ) =

{
h ∈ H 2(0,1) ; h(0) = h(1) = 0

}
.

The operator A has an infinite monotone sequence of
simple eigenvalues {λn}∞

n=1 satisfying limn→∞ λn = ∞ [18].
The eigenvectors {ψn}∞

n=1 form a complete orthonormal
system in L2(0,1). Also, they satisfy the inequalities [18]

π
2n2 p+q ≤ λn ≤ π

2n2 p+q, n ∈ N. (4)

Well-posedness of system (1) has been studied thor-
oughly [19]. In particular, given z(·,0) ∈ L2(0,1), sys-
tem (1) has a unique solution z ∈ C([0,∞),H 1

0 (0,1)) ∩
C1((0,∞),H 1

0 (0,1)) such that z(·, t)∈Dom(A ) for all t > 0.
We present the solution to (1) as

z(x, t) =
∞

∑
n=1

zn(t)ψn(x), zn(t) = ⟨z(·, t),ψn⟩ , n ∈ N. (5)

Differentiating under the integral sign and integrating by
parts, we have żn(t) =−λnzn(t) for all n ∈ N, whence

z(x, t) =
∞

∑
n=1

zn(0)e−λnt
ψn(x). (6)

Henceforth, we adopt the notation [n] = {i∈N ; 1≤ i≤ n}.
Proposition 1: There exist constants υ ,ϒ > 0 such that

υ

(
m2 −n2

)
≤ λm −λn ≤ ϒ

(
m2 −n2

)
(7)

holds for every choice of 1 ≤ n < m.
Proof: We first show that (7) holds for A ≤ n < m,

with some A ∈ N. By [20, Equation 4.21], the eigenvalues
{λn}∞

n=1 have the asymptotic behavior λn = π2

B2 n2 + a0 +

O
(

1
n2

)
, n≥ 1, where B and a0 are positive constants. Hence,

λm −λn ≥ π2

2B2

(
m2 −n2

)
+ π2

2B2 +O
(

1
A2

)
, which implies the

lower bound in (7), for large enough A. The upper bound is
proved via similar arguments. Next, given A, it is clear that
by increasing ϒ and decreasing ν , we can further guarantee
(7) for 1 ≤ n < m ≤ A. We show that ϒ and υ can be tuned
such that (7) holds for 1 ≤ n ≤ A and m > A. Assume ν

cannot be found such that (7) holds. Then, for any q ∈ N,
there exist nq ≤ A, mq > A such that

2−q >
λmq −λnq

m2
q −n2

q

(4)
≥

π2 (pm2
q − pA2)+q−q

m2
q −1

.

By limq→∞ mq =∞ we get a contradiction. Similar arguments
hold for ϒ.

For χ = {χn}S
n=1 ⊆C, the Lagrange interpolation basis is

Lχ,n(z) = ∏
j ̸=n

z−χ j

χn −χ j
, n ∈ [S], (8)

and the corresponding Hermite interpolation basis is

Hχ,n(z) =
[
1−2(z−χn)L′

χ,n(χn)
]

L2
χ,n(z),

H̃χ,n(z) = (z−χn)L2
χ,n(z), n ∈ [S].

(9)

The Hermite basis contains polynomials of degree at most
2S − 1. For a polynomial q(z) = ∑

S
j=0 a jz j, we introduce

the coordinate map C(q) = col
{

a j
}S

j=0. The Hermite matrix

HS (χ) =
(

row
{[
C(Hχ,n) C(H̃χ,n)

]}S
n=1

)⊤
∈R2S×2S is the

unique matrix satisfying

HS (χ)col
{

ζ
j
}2S−1

j=0
= col

{[
Hχ,n(ζ )
H̃χ,n(ζ )

]}S

n=1
. (10)

Proposition 2: Let 0 ≤ w1 < w2 ≤ ∞ and Qα(x) =
− log(1− e−αx) with x > 0 and α > 0. The integrals

Jw1,w2(α) :=
∫ w2

w1

Qα (x)dx > 0 (11)

are finite and decreasing, and limα→∞ Jw1,w2(α) = 0.
Proof: We prove the result for w1 = 1 and w2 = ∞;

other cases are similar. Integrating by parts, we have

J1,∞(α) =
[
−x log

(
1− e−αx)]∞

1 +α

∫
∞

1

x
1− e−αx e−αxdx.

Since limx→∞ x log(1− e−αx) = 0 and the integral on the
right-hand side converges, we have that J1,∞(α)<∞. Given
x ∈ (0,∞), (0,∞)∋ α 7→ − log(1− e−αx)∈ (0,∞) is decreas-
ing, whence J1,∞(α) is decreasing too. Let ε > 0, α > 1 and
M > 1. Then, J1,∞(α)≤J1,M(α)+JM,∞(1). Choosing M
so that the rightmost term is smaller than ε

2 and then, by
Dini’s theorem, α∗ such that J1,M(α)< ε

2 for α > α∗, we
have that α > min(1,α∗) implies 0 < J1,∞(α)< ε .

III. THE IDENTIFICATION OBJECTIVE

A. Measurements and standing assumptions
Considering system (1) subject to the non-local measure-

ments (2), we substitute (6) into (2) to obtain

y(t) =
∞

∑
n=1

cnzn(0)e−λnt , cn = ⟨c,ψn⟩ , n ∈ N. (12)

Remark 1: We do not assume that the solution to (1) is
exponentially stable. In fact, for |q| > 0 large, the solution
(6) may contain (finitely) many unstable modes.

Before formally stating our identification objective, we
present our main assumptions on system (1) and measure-
ments (2). Let there exist N1,N2 ∈N such that the following
properties hold.

Assumption 1: The coefficients {cn}∞

n=1 satisfy



1) cn = 0 for all n > N1 +N2,
2) cn are known and nonzero for n ∈ [N1],
3) |ck|

|cn| ≤ Mcε for all n ∈ [N1],k ∈ [N1 +N2]\ [N1]

for some ε > 0 and Mc > 0. We define

c̃k :=
ck

ε
, k ∈ [N1 +N2]\ [N1].

Assumption 2: The initial condition z(·,0) ∈ L2(0,1) is
unknown and satisfies zn(0) ̸= 0 for n ∈ [N1]. Furthermore,
|zk(0)|
|zn(0)| ≤Mz for some Mz > 0, n∈ [N1] and k ∈ [N1+N2]\ [N1].

Remark 2: Our proposed approach allows to approximate
{yn}N1

n=1 even if both {cn}N1
n=1 and {zn(0)}N1

n=1 are unknown.
However, knowledge of {yn}N1

n=1 in (14) does not allow to
separate {cn}N1

n=1 and {zn(0)}N1
n=1 from their (corresponding)

products, if both sets are unknown. This is an inherent
ambiguity of the identification objective. In Assumptions 1
and 2, we consider {cn}N1

n=1 to be known and {zn(0)}N1
n=1 to

be unknown. Our approach is also valid for unknown {cn}N1
n=1

and known {zn(0)}N1
n=1.

Assumption 3: The system measurements are available
only at a finite set of times {tk := k∆}2N1−1

k=0 , with step-size
∆ > 0.

Subject to Assumptions 1-3, the measurements (12) at the
available times {tk}2N1−1

k=0 can be presented as

y(tk) =
N1

∑
n=1

yne−λn∆k

︸ ︷︷ ︸
ymain(tk)

+ε

N1+N2

∑
n=N1+1

yne−λn∆k

︸ ︷︷ ︸
ytail(tk)

, k = 0, . . . ,2N1 −1 (13)

where

yn :=

{
cnzn(0), n ∈ [N1]

c̃nzn(0), n ∈ [N1 +N2]\ [N1]
(14)

satisfy |yk|
|yn| ≤McMz =: My for all n∈ [N1],k ∈ [N1+N2]\ [N1].

B. Identification objective and considered regime

We use the measurements (13) to estimate {zn(0),λn}N0
n=1,

for some N0 ≤N1. To define a recovery criteria, we introduce

F

({
ŷn, λ̂n

}N1

n=1
,ε

)
= col

{
N1

∑
n=1

ŷne−λ̂n∆k − y(tk)

}2N1−1

k=0

, (15)

which reflects the discrepancy between the measurements
{y(∆k)} and the “virtual measurements”

{
∑

N1
n=1 ŷne−λ̂n∆k

}
obtained from a candidate P̂ :=

{
ŷn, λ̂n

}
. Note that y(tk) in

(13) depends on ε .
Definition 1: P̂ is an ε-approximation of {yn,λn} if

F
(
P̂;ε

)
= 0.

The intuition behind Definition 1 is as follows:
• Measurements (13) are split into ymain and ytail. The

former contains the desired {zn(0),λn}N0
n=1, whereas the

latter is an ε-structured perturbation, where ε > 0, since
c ∈ L2(0,1) is not a perfect filter, i.e. c /∈ span{ψn}N1

n=1.
• When c is a perfect filter, ε = 0, and thus F (P;0) = 0,

where P = {yn,λn}. In particular, the ε-approximation
coincides with the true parameter, namely P = P̂.

• Hence, we propose to seek an approximation P̂ which
preserves the equality F

(
P̂;ε

)
= 0 for ε > 0.

Given an ε-approximation P̂, Assumption 1 and expression
(14) allow us to derive estimates for the dominant N0 ≤
N1 projection coefficients of the initial condition z(·,0),
{zn(0)}N0

n=1, since ẑn(0) =
ŷn
cn
, n ∈ [N0].

We address the analytical problem of existence of P̂ =
P̂(ε). Specifically:

1) Given a small ε > 0, we show that there exists a unique
P̂ = P̂(ε) and we derive the first-order expansions of the
reconstruction errors with respect to ε:

eλ (n)
ε

:= λ̂n(ε)−λn
ε

= Kλ (n)+o(1),
ey(n)

ε
:= ŷn(ε)−yn

ε
= Ky(n)+o(1), n ∈ [N0], ε → 0,

(16)

where Kλ (n) and Ky(n) are the first-order condition
numbers for the recovery of P̂, which describe how much
the ε-structured perturbation is amplified when estimating
the reconstruction errors eλ (n) and ey(n).

2) Assuming N2 fixed, we derive the asymptotics of Kλ (n)
and Ky(n) for n ∈ [N1] in the

Regime: N1 fixed and ∆ → ∞ (17)

in order to obtain insight into the behaviour of the recon-
struction errors eλ (n) and ey(n) for small ε .

3) When computing P̂, our numerical simulations show
that the ESPRIT algorithm [17] is first-order optimal, i.e.,
its first-order condition numbers exhibit the same asymptotic
behaviour as Kλ (n) and Ky(n) in the regime (17).

Remark 3: The considered problem is highly challenging
for two reasons. First, we assume that only finitely many
measurements are available for the reconstruction proce-
dure, for any triplet (∆,N1,N2). Second, although (1) is a
linear system, the task of recovering {yn,λn}N0

n=1 from the
measurements (13) is a nonlinear inverse problem, as the
measurements depend nonlinearly on these parameters.

IV. IDENTIFICATION PROBLEM: FIRST-ORDER ANALYSIS

Here we derive explicit expressions for the first-order
condition numbers Kλ (n) and Ky(n) in (16), and bound
their asymptotic behavior in the regime (17).

Only to keep the presentation simpler, we assume that
N2 = 1 (i.e., the sum ytail(tk), k ∈ {0} ∪ [2N1 − 1], in (13)
contains a single term). The analysis and the conclusions of
this section remain identical for an arbitrary fixed N2 ∈ N.

Throughout the section, we use the notation

φn := e−λn∆, n ∈ [N1 +1]. (18)

The measurements in (13) are then rewritten as

y(tk) =
N1

∑
n=1

ynφ
k
n + εyN1+1φ

k
N1+1, k ∈ {0}∪ [2N1 −1]. (19)

We now prove the existence of an ε-approximation P̂(ε)
and derive closed-form expressions for Kλ (n) and Ky(n).

Theorem 1: There exist ε∗ > 0 and continuously differen-
tiable functions P̂(ε) :=

{
ŷn(ε), λ̂n(ε)

}
such that P̂(0) = P

and that, for all |ε| < ε∗, F (P̂;ε) = 0 ⇐⇒ P̂ = P̂(ε).
Furthermore, we have[

Ky(n)
Kλ (n)

]
= yN1+1

[
HΦ,n(φN1+1)

− 1
∆ynφn

H̃Φ,n(φN1+1)

]
, n ∈ [N1], (20)



where
{

HΦ,n, H̃Φ,n
}N1

n=1 are the Hermite interpolation basis
polynomials, given in (9), associated with Φ = {φn}N1

n=1.
Proof: Consider the function F (P̂,ε) in (15) and recall

that P = {yn,λn} are the true parameters. It can be seen
that F is differentiable in all variables (P̂,ε). We denote by
∂P̂F (P,0) its Jacobian with respect to P̂ evaluated at P̂ = P
and ε = 0. Then, ∂P̂F (P,0) = J(P,0)D(P,0), with

J(P,0) =HN1 (Φ)−1 , D(P,0) = diag
{[

1 0
0 −∆ynφn

]}N1

n=1
, (21)

where HN1 (Φ) is the Hermite matrix, given in (10), asso-
ciated with Φ. Since the eigenvalues {λn}∞

n=1 are simple, it
follows from the uniqueness of Hermite interpolation that
HN1 (Φ) is invertible. In view of Assumptions 1-2 and of
(14), we have that yn ̸= 0, n∈ [N1], whence det(∂P̂F (P,0)) ̸=
0. The implicit function theorem [21] guarantees that there
exist ε∗ > 0 and continuously differentiable functions P̂(ε)
such that P̂(0) = P and F (P̂;ε) = 0 ⇐⇒ P̂ = P̂(ε) for all
|ε| < ε∗. Differentiating F (P̂(ε),ε) = 0 with respect to ε

and substituting ε = 0, we obtain

col
{[

Ky(n)
Kλ (n)

]}N1

n=1
= ∂P̂F (P,0)−1yN1+1 col

{
φ k

N1+1

}2N1−1

k=0
.

(22)
Recalling that ∂P̂F (P,0) =HN1 (Φ)−1 D(P,0) and that (10)

holds, we obtain the expression in (20).
Theorem 1 allows us to analyze the asymptotic behaviour of
the condition numbers

{
Ky(n)

}N1
n=1 and {Kλ (n)}

N1
n=1 in the

regime (17) through the analysis of the polynomials in (20).
Given ∆ > 0, N1 ∈ N and n ∈ [N1], set the functions

ξ1 = ∏ j ̸=n(φN1+1 −φ j)
2, ξ2 = ∏

n−1
j=1(φn −φ j)

2

ξ3 = ∏
N1
j=n+1(φn −φ j)

2, ξ4 = ∑k ̸=n |φn −φk|−1,
(23)

where all summations/products range over indices in [N1],
and we use the convention that ∏

k
j=l b j = 1 and ∑

k
j=l b j = 0

whenever k < l. We omit the dependence of functions on
(n,N1,∆) for simplicity of notation.

Remark 4: Recalling the Lagrange polynomials given in
(8) we observe that L2

Φ,n(φN1+1) =
ξ1

ξ2ξ3
and

∣∣∣L′
Φ,n(φn)

∣∣∣= ξ4.
To prove our main result, we need several lemmas.
Lemma 1: The functions in (23) can be written as

ξ1 = e−2∆∑ j ̸=n λ j−2θ1 , ξ2 = e−2∆∑
n−1
j=1 λ j−2θ2 , n > 1,

ξ3 = e−2∆(N1−n)λn−2θ3 , n < N1,

where

θ1 := ∑ j ̸=n− log
(

1− e−∆(λN1+1−λ j)
)
> 0,

θ2 := ∑
n−1
j=1 − log

(
1− e−∆(λn−λ j)

)
> 0, n > 1,

θ3 := ∑
N1
j=n+1− log

(
1− e−∆(λ j−λn)

)
> 0, n < N1

satisfy the inequalities

θ1 ≤ J0,∞(∆υN1)+ log
(

1− e−∆υ(N1+1−n)(N1+1)
)
,

θ1 ≥ J1,2(∆ϒ(2N1 +1))+ log
(

1− e−∆ϒ(N1+1−n)(2N1+1)
)
,

J1,2(∆ϒ(2n−1))≤ θ2 ≤ J0,∞(∆υ(n+1)),
J1,2(∆ϒ(N1 +n+1))≤ θ3 ≤ J0,∞(∆υ(2n+1)),

where the positive constants υ and ϒ are those given in
Proposition 1 and the function Jw1,w2 is given in (11).

Proof: Due to space constraints, we consider ξ1. The
results for ξ2 and ξ3 are proved similarly. We have

log(ξ1) =−2∆ ∑
j ̸=n

λ j −2θ1.

Employing (7), we obtain

θ1 ≥ ∑ j ̸=n− log
(

1− e−∆ϒ((N1+1)2− j2)
)
.

Let ℓ := log
(

1− e−∆ϒ(N1+1−n)(2N1+1)
)

. Then, we have

∑ j ̸=n− log
(

1− e−∆ϒ((N1+1)2− j2)
)
− ℓ

≥ ∑
N1
j=1− log

(
1− e−∆ϒ j(2N1+1)

)
≥

∫ N1+1
1 Q∆ϒ(2N1+1)(x)dx

= J1,N1+1(∆ϒ(2N1 +1))≥ J1,2(∆ϒ(2N1 +1)),

where the first inequality holds because (N1 + 1)2 − j2 ≤
(N1 + 1 − j)(2N1 + 1) and the second holds because the
sum in the second row can be viewed as Riemannian
sum of the positive and monotonically decreasing function
Q∆ϒ(2N1+1)(x) over x ∈ [1,N1]. Hence, the integral provides
a lower bound for the sum. The upper bound is proved
analogously, using (N1 +1− j)(N1 +1)≤ (N1 +1)2 − j2.

Consider the Lagrange polynomials {LΦ,n}n∈[N1]
as in (8).

Lemma 2: For n ∈ [N1], we have

L2
Φ,n(φN1+1) =

{
e−2∆∑

N1
j=n+1(λ j−λn)+Θ, n < N1,

e2θ2−2θ1 , n = N1,
(24)

where

Θ =

{
−2(θ1 −θ2 −θ3) , n > 1,
−2(θ1 −θ3) , n = 1.

(25)

Moreover, fixing n ∈ [N1 −1], ∆ > 0 and denoting

σ(n,N1) :=
N1(N1 +1)(2N1 +1)

6
− n(n+1)(2n+1)

6
− (N1 −n)n2,

there exists a constant Mφ = Mφ (∆)> 0 such that

L2
Φ,n(φN1+1)≤ Mφ e−2∆σ(n,N1), ∆ ≥ ∆. (26)

Proof: The equality (24) follows from Lemma 1 and the
fact that L2

Φ,n(φN1+1) =
ξ1

ξ2·ξ3
. Now let n ∈ [N1 −1]. In view

of Lemma 1, Θ in (25) is uniformly bounded in ∆ ∈ [∆,∞).
Moreover,

−2∆∑
N1
j=n+1(λ j −λn)

(7)
≤ −2∆υσ(n,N1)≤−2∆υ(2N1 −1), (27)

whereas for ∆ ≥ ∆, we employ Lemma 1 and Proposition 2
to obtain

eΘ ≤ e2(J0,∞(2υ∆)+J0,∞(3υ∆)) =: Mφ (28)

for n ∈ [N1 −1]. (26) follows from (24),(27) and (28).
Proposition 3: The term ξ4 in (23) satisfies

ξ4 ≤ Mξ

e∆λN1

∆
(29)

for some Mξ > 0 independent of ∆ > 0.
Proof: We write ξ4 = ξ4,1 +ξ4,2, where

ξ4,1 = ∑k∈[n−1]
1

|φn−φk | and ξ4,2 = ∑
N1
k=n+1

1
|φn−φk | .

For ξ4,1 with n > 1, we have

ξ4,1 ≤ e∆λn

∆ ∑
n−1
k=1

1
λn−λk

≤ e∆λn

∆υ ∑
n−1
k=1

1
n2−k2 ≤ e∆λn

∆υ

ln(2n)
2n . (30)



where the first inequality follows from the application of
Lagrange’s theorem with the derivative computed at λn, the
second follows from (7). The third inequality follows from
comparison with the integral of the positive and monoton-
ically increasing function x 7→ (n2 − x2)−1 on x ∈ [1,n− 1].
Analogously, for n < N1 we obtain

ξ4,2 ≤ ∆−1
∑

N1
k=n+1

e∆λk

λk−λn

(7)
≤ e∆λN1

∆υ ∑
N1
k=n+1

1
k2−n2 ≤ e∆λN1

∆υ

1+ln(2n+1)
2n .

(31)
The result follows from (30), (31) since ln(2n)

2n and 1+ln(2n+1)
2n

are bounded sequences.
We can now establish the asymptotic behaviour of the
condition numbers Kλ (n) and Ky(n) in the regime (17).

Theorem 2: Recall the first-order condition numbers
Kλ (n) and Ky(n) in (16). Let n ∈N and ρ > 0. There exists
N∗

1 (ρ) ∈ N with n < N∗
1 (ρ) such that, for all N1 > N∗

1 (ρ),∣∣Ky(n)
∣∣≤ ζy(n,N1,yN1+1)∆

−1e−ρ∆,

|Kλ (n)| ≤ ζλ ∆
−1e−ρ∆,

∆ → ∞ (32)

with ζy(λN1 ,yN1+1)> 0 ,ζλ > 0 independent of ∆.
Proof: Given ρ > 0, let N∗

1 (ρ) > n be large enough
such that for all N1 > N∗

1 (ρ), λN1 > 0 and

−2υσ(n,N1)+λN1 <−ρ. (33)

Note that such N∗
1 (ρ)> 0 exists since σ(n,N1) grows as N3

1 ,
whereas by (4), we have λN1 = O(N2

1 ) as N1 → ∞. Consider
first Ky(n). In view of (20), we have∣∣Ky(n)

∣∣ Remark 4
≤ |yN1+1|

(
1+2e−∆λn ξ4

)
L2

φ ,n(φN1+1).

Employing (26), (29) and (33) with ∆ ≥ ∆ > 0,∣∣Ky(n)
∣∣≤ Mφ |yN1+1|

(
∆+2e−∆λn Mξ e∆λN1

)
∆−1e−2∆υσ(n,N1)

≤ Mφ |yN1+1|
(

∆e−∆λN1 +2Mξ e−∆λn

)
∆−1e−ρ∆.

Since λN1 > 0, max∆≥∆ ∆e−∆λN1 < ∞, whence we can take

ζy(n,N1,yN1+1) := Mφ |yN1+1|
(

max
∆≥∆

∆e−∆λN1 +2Mξ e−∆λn

)
in (32). Similarly, we have

|Kλ (n)| =
|yN1+1|
∆|yn|

|φN1+1−φn|
φn

L2
Φ,n (φN1+1) .

By Assumptions 1-3, |yN1+1|
|yn| ≤ My, whereas |φN1+1−φn|

φn
≤ 1.

Hence, from (26), we again have

|Kλ (n)| ≤ MyMφ ∆
−1e−2∆σ(n,N1) =: ζλ ∆

−1e−ρ∆,

which concludes the proof.
Remark 5: Theorem 2 guarantees exponential decay of

Ky(n) and Kλ (n) provided that N1 > N∗
1 (ρ). This condition

is required only for Ky(n) and follows from the fact that the
independent estimates of L2

Φ,n(φN1+1) and |L′
Φ,n(φn)|= ξ4 in

(26) and (29), respectively, are combined in bounding Ky(n),
which leads to conservatism. The numerical simulations in
the next section show that the predicted exponential decay
rate is obtained without choosing N1 according to (33).

Remark 6: Note that according to Theorem 2, a larger
value of the constant N1 > N∗

1 (ρ) actually allows one to
obtain a larger constant ρ , thereby leading to faster decay
of the condition numbers as ∆ → ∞.

(a) (b)

Fig. 1: (1a) Kλ ,Ky for N1 = 4 and λn = n2. The asymptotics
break down for large ∆, due to inversion of badly conditioned
matrices in finite precision computations (16 decimal digits).
(1b) ESPRIT algorithm conditioning (see (34)), applied to
the sequence {y(∆k)}2N1−1

k=0 with N1 = 4 and λn = n2. Here
we used 32 decimal digits of precision.

V. NUMERICAL SIMULATIONS

We provide numerical examples to validate our theory. All
simulations are implemented in Wolfram Mathematica [22].

A. Condition numbers

Consider the model (13) with N1 = 4, N2 = 1, λn = n2,
yn = 1 for all n and tk = k∆. We use (22) to compute
the condition numbers Kλ (n) and Ky(n), n ∈ [N1]. The
results in Fig. 1a show exponential decay of the condition
numbers, with the lowest order parameters (n = 1) being the
most stable, while the highest order ones (n = N1) are the
least stable. Differently from Theorem 2, here we fix N1 a
priori, and still obtain an exponential decay of the condition
numbers.

B. ESPRIT algorithm

The ESPRIT algorithm [17] is one of the best-performing
methods for exponential fitting. It requires at least 2N1
equispaced samples of the signal y(t) of the form (13), and
produces estimates of the parameters {λn,yn}N1

n=1. It is known
to provide exact solutions in the noiseless case (i.e. ε = 0),
and performs close to optimal in the presence of noise, in the
context of the so-called super-resolution problem in applied
harmonic analysis [16].

We apply ESPRIT to the sequence {y(∆k)}2N1−1
k=0 , with

the same setup as in Section V-A. In Fig. 1b, we see
that the conditioning of the ESPRIT algorithm is consistent
with Theorem 2 and the computed condition numbers in
Section V-A. We plot the rescaled errors (recall (16)),

Eλ (n) =

∣∣λ̃n −λn
∣∣

ε
, Ey(n) =

∣∣ỹn − yn
∣∣

ε
, (34)

where λ̃n and ỹn are the parameter values recovered by
ESPRIT, and, furthermore, the λ̃n’s have been index-matched
to the true λn’s. Here ε = 10−1, and the results were
computed with 32 decimal digits of precision.

C. PDE parameter identification

We test the complete procedure on a PDE identification
problem. We consider the PDE (1) with constant p≡ q≡ 0.1.
The eigenvalues and eigenfunctions are explicitly given by
λn = n2π2−q and ψn(x) =

√
2sin(nπx). The initial condition



Fig. 2: Numerical solution of the PDE (right) with the
specified initial condition (left).

Fig. 3: The measurement filter c(x), x ∈ [0,1] and the corre-
sponding non-local measurement data y(t), t ∈ [0,2].

is set to be zn(0) = (−1)n+1
(√

2n3
)−1

. To solve the PDE,
we use the method of lines for space discretization with
Nx = 60 collocation points and 4th order finite difference ap-
proximation, and the resulting ODE system is integrated for
t ∈ [0,2]. The resulting solution and the initial condition are
plotted in Fig. 2. Our implementation utilized the NDSolve
library function.

Next, let c(x) = ∑
N1
n=1 cnψn(x)+ ε ∑

N1+2
n=N1+1 cnψn(x) where

{cn}N1+2
n=1 with cn ∈ [1,2] are randomly chosen, and ε = 10−4.

The measurements y(t) in (2) are computed using global
adaptive quadrature as implemented in NIntegrate library
function. Finally, y(t) is sampled at 1025 equispaced points
in [0,2], thus giving a minimal value of ∆min := 1

512 . The
filter and the sampled measurements are shown in Fig. 3.

(a) (b)

Fig. 4: ESPRIT recovery errors. (4a) Recovery of PDE
eigenvalues by ESPRIT, increasing ∆. The relative errors in
λn for n = 1, . . . ,N1 are plotted. (4b) Recovery errors of p,q,
estimated from {λ̂n}N1

n=1 by a linear least squares fit.

We apply the ESPRIT algorithm on {y(k∆)}2N1−1
k=0 with

varying ∆. The relative errors in the recovered eigenvalues
are plotted in Fig. 4a. The deterioration of the error when
∆ passes a certain threshold is consistent with our earlier
observations due to the finite precision in the computations.

Here, all computations are done with 100 decimal digits of
precision. Finally, we estimate p,q from the recovered eigen-
values, using the relationship λn = π2n2 p− q by applying
linear least squares regression to {λ̂n}N1

n=1. The errors in the
estimated parameters are plotted in Fig. 4b.
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