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Abstract

We study the spectral properties of infinitely smooth multivariate kernel matrices when the
nodes form a single cluster. We show that the geometry of the nodes plays an important role
in the scaling of the eigenvalues of these kernel matrices. For the multivariate Dirichlet kernel
matrix, we establish a criterion for the sampling set ensuring precise scaling of eigenvalues.
Additionally, we identify specific sampling sets that satisfy this criterion. Finally, we discuss
the implications of these results for the problem of super-resolution, i.e. stable recovery of sparse
measures from bandlimited Fourier measurements.

1 Introduction

Super-Resolution Problem. The problem of super-resolution (SR) is to recover the fine details of
a signal from inherently low resolution measurements in the frequency domain. The SR problem has
a variety of applications in signal processing, imaging, optics, inverse scattering, and data analysis
problems [9, 27]. In the last years, a particular SR model has received considerable attention, where
the signal is modelled as a sparse measure [8]. Let Td := [−π, π)d ≡ (R mod 2π)d, let δ(·) denote
the Dirac delta distribution, and consider the signal

f(t) :=
n∑

j=1

αjδ(t− xj), t, xj ∈ Td, αj ∈ C, (1)

which we aim to recover. We refer to {xj} as the ”nodes” and to {αj} as the ”coefficients” or
“amplitudes”. The noisy measurements are given by

f̂(ω) :=
n∑

j=1

αje
ı⟨ω,xj⟩+ϵ(ω), ω ∈ GN := {−N+1, . . . ,−1, 0, 1, . . . , N−1}d ⊂ Zd, |ϵ(ω)| ≤ ϵ. (2)

Moreover, define SRF := 1
N∆ , where ∆ represents the smallest distance (e.g. in the infinity norm)

between the nodes. It is well-known that, at least in the one-dimensional case, this quantity controls
the numerical stability of the problem. The super-resolution regime is when SRF ≫ 1; while the
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well-separated case is when SRF ≤ 1. In the super-resolution regime, nodes are organized in
clusters, with a distance of order ∆ between any two nodes within a cluster.

One primary objective in theory of super-resolution is to define optimal bounds for reconstruc-
tion errors, commonly referred to as min-max error bounds, or the computational resolution limits
[14, 28, 25, 12, 8]. These bounds are achieved by the (non-tractable) most effective algorithm under
the worst-case scenario. Furthermore, these stability bounds serve to validate the optimality of dif-
ferent tractable solution methods, offering assurances regarding the methods’ performance [26, 20,
21]. It has been showed previously that the min-max bounds are related to the smallest singular
value of the Vandermonde matrix U of the system [12], which is defined as

U(x1, . . . , xn;GN ) :=
[
exp ı⟨ω, xj⟩

]j=1,...,n

ω∈GN
∈ C|GN |×n. (3)

Extensive research has been conducted on the one-dimensional scenario, covering both well-
separated and super-resolution regimes [7, 25, 11, 33]. Let ℓ be the number of nodes in the largest
cluster. Then, in the super-resolution regime, the smallest singular value of the Vandermonde
matrix scales like SRF1−ℓ, resulting in “on-grid” min-max bounds to be of order SRF2ℓ−1ϵ [5, 25],
(cf. similar off-grid bounds [8, 29]). In the multidimensional context, several results are available for
the well-separated regime as well as the super-resolution regime [28, 23, 22, 16, 34], under specific
conditions related to the unknown nodes. A key distinction between the one-dimensional and
multidimensional cases lies in the spectrum of the Vandermonde matrix, wherein the geometry of
the nodes plays a crucial role. As we shall show in this paper, and consistent with the observations
in [22], it is not solely the distance between the nodes that determines the spectral properties of the
Vandermonde matrix, at least in the near-colliding limit, but also the algebraic variety on which
these nodes are situated.

Kernel matrices in the flat limit. Following the previous discussion, let us consider the
Gramian matrix DN := 1

(2N)d
U∗U , which is the “kernel matrix” for the multidimensional Dirichlet

kernel. Kernel matrices are of importance in various fields, including scattered data approximation
and machine learning, see e.g. [1, 41] and references therein. In the context of super-resolution,
if all the nodes X = {xj}nj=1 form a single cluster and SRF ≫ 1, then the kernel matrix DN can
be considered in the so-called “flat limit”, a term introduced in [15] in the context of radial basis
function (RBF) interpolation. The flat limit was investigated recently in various publications, from
among those [1] and [41] being most relevant to our work. While [41] deals exclusively with RBF
kernels and derives asymptotic eigenvalue scaling, [1] extends those results to arbitrary smooth
kernels, albeit under the assumption of the points not lying on any low-dimensional algebraic
variety. The approach from [41] is primarily based on Micchelli’s lemma [30], and we have adopted
this approach previously in the one-dimensional case [7].

Contributions. The main result of this paper, Theorem 1, derives the asymptotic scaling of
eigenvalues of a kernel matrix induced by an infinitely smooth kernel in the flat limit, generalizing
the corresponding result of [1] to arbitrary geometry. As a corollary, we derive the asymptotic
scaling of the eigenvalues of DN , leading to the appropriate scaling of the singular values of the
Vandermonde matrix (3), when the nodes are arranged within a single cluster. In this context, a
”single cluster” is characterized by the condition N∆ ≪ 1. We therefore obtain a generalization of
the results from [23] which considered mainly the “single line” geometry, as well as the extension
of [7, Theorem 2.3] to the multivariate case. See also Remark 6.

In more detail, suppose that xj = ∆yj with ϵ = N∆, and take ϵ→ 0. We show that the number
of eigenvalues of DN ({x1, . . . , xn}) decaying like ϵ2k, is precisely equal to a certain number tk which
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depends on the algebraic properties of the original nodes {yj} (see Theorem 5). In particular, when
all the nodes belong to a one-dimensional affine subspace (a “single-line” geometry), then tk = 1,

which implies σmin(U) ≈ N
d
2 ϵn−1 (as derived in [23]). On the other hand, when {yj} are in a

general position, then, as long as n ≥
(
k+d
d

)
, we have tk =

(
k+d−1
d−1

)
, where d is the dimension of

the space. These numbers coincide for d = 1, but may differ drastically for d > 1. For example, if
d = 2 then σmin(U) may be as large as NϵO(

√
n). Our results are slightly more general and provide

the eigenvalue scaling for arbitrary (symmetric) sampling sets ω ∈ S, with the upper bounds the
same as described above; however we can prove matching lower bounds only for certain S satisfying
the so-called Geometric Characterization Condition (in particular satisfied by GN ), see Definition 8
below.

To demonstrate the relevance of our findings to the multivariate SR problem, in Section 6 we
also report on a numerical study of reconstructing the signals from noisy measurements using the
nonlinear least squares (NLS) method and the multidimensional ESPRIT method [36]. Our results
indeed suggest that the asymptotic conditioning of the problem may vary from the “worst-case”
single-line scenario (previously considered in [28]), to the “best-case” general position scenario.
We are therefore confident that our findings will enhance the understanding of super-resolution
stability in high-dimensional settings and can contribute to the analysis of current multivariate
SR recovery methods such as [13, 32, 38, 39, 36]. Furthermore, we believe these results can serve
as an important step towards establishing min-max error bounds in the general multidimensional
scenario, when the nodes form multiple clusters (where some kind of multidimensional “confluent”
Vandermonde matrices may be required, cf. [3, 2, 4, 6]).

Organization of the paper. In Section 2 we establish some notation and definitions. In
Section 3 we present our main result, Theorem 1, which describes the asymptotic scaling of the
eigenvalues of kernel matrices in the flat limit. In Section 4 we specialize the results to the Dirichlet
kernel matrix, showing, in particular, that the bounds of Theorem 1 are tight. In Section 5 we
derive the corresponding scaling of the singular values of the Vandermonde matrix, which requires
additional technical arguments. Finally, numerical results are presented in Section 6.

Acknowledgements. We thank Konstantin Usevich, Benedikt Diederichs, and Weilin Li for
helpful discussions. This work has been supported by the Israel Science Foundation, grant 1793/20,
by a collaborative grant from the Volkswagen Foundation, and by the Ariane de Rothschild Women
Doctoral Program.

2 Preliminaries

We adapt some definitions and notation from [1]. For a multi-index α = (α1, . . . , αd) ∈ Zd
+, denote

∣∣α∣∣ := d∑
j=1

αj , α! := α1! · · · αd!,

and let for each j = 0, 1, 2, . . .

Pj := {α ∈ Zd
+ :

∣∣α∣∣ ≤ j}, Hj := {α ∈ Zd
+ :

∣∣α∣∣ = j} = Pj \ Pj−1, P−1 := ∅.

The cardinalities of these sets are given by:

pj := #Pj =

(
j + d

d

)
, hj := #Hj =

(
j + d− 1

d− 1

)
= #Pj −#Pj−1. (4)
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For x ∈ Rd and α ∈ Zd
+, the monomial xα is defined as xα := xα1

1 · · ·xαd
d , and its (total) degree

is |α|. Let ≺ be a fixed graded order on the set of multi-indices Zd
+ (or, equivalently, on the set of

monomials), for example a graded lexicographic order or a graded reverse lexicographic order. It
will always be implied in the following.

Definition 1. Let Ω ⊆ Rd be a fixed open set. A kernel function K : Ω× Ω → R is said to belong
to the class C(r,r)(Ω) (or CPr×Pr(Ω)) when the partial derivatives

K(α,β)(x,y) :=
∂|α|+|β|

∂xα1
1 · · · ∂xαd

d ∂yβ1
1 · · · ∂yβd

d

K(x,y)

exist and are continuous on Ω× Ω, for all α, β ∈ Pr. When K ∈ C(r,r)(Ω) for all r ∈ N, we write
K ∈ C(∞,∞)(Ω).

Definition 2. For a kernel K ∈ C(r,r)(Ω), a finite set X ⊂ Ω and ϵ > 0 we define the scaled kernel
Kϵ(x,y) := K(ϵx, ϵy) and the kernel matrix

Kϵ(X ) :=
[
Kϵ(x,x

′)
]
x,x′∈X ∈ R|X |×|X |. (5)

Definition 3 (Multivariate Vandermonde matrix). For a finite set X = {x1, . . . ,xn} ⊂ Rd of
nodes, and an ≺-ordered set of multi-indices A = {α1, . . . ,αm} ⊂ Zd

+ (i.e. α1 ≺ · · · ≺ αm), we
define the multivariate Vandermonde matrix as

VA = VA(X ) =
[
(xi)

αj
]1≤j≤m

1≤i≤n
∈ Rn×m. (6)

Notice that V is a real Vandermonde matrix, as opposed to the (transpose of the) complex
Vandermonde matrix U defined in (3). Let us further denote V≤k := VPk

(X ) and Vk := VHk
(X ).

The matrix V≤k ∈ Rn×pk can be partitioned into k+1 matrices Vk ∈ Rn×hk arranged by increasing
degree:

V≤k =
[
V0 V1 . . . Vk

]
. (7)

Definition 4. Let K ∈ C(r,r)(Ω), with Ω ⊆ Rd and 0 ∈ Ω. Let A,B ⊂ Zd
+ be two sets of multi-

indices satisfying |α|, |β| ≤ r for all α ∈ A, β ∈ B. The Wronskian matrix of K is defined as:

WK
A,B =

[
K(α,β)(0, 0)

α!β!

]
α∈A,β∈B

, (8)

where the rows and columns are indexed by multi-indices in A and B according to the chosen
ordering. In addition, denote by WK

≤k =WK
Pk

=WK
Pk,Pk

.

The final piece of notation is central to our discussion, describing a geometric property of X .

Definition 5 (Discrete moment order, [40]). The discrete moment order of a set X consisting of
n pairwise distinct points, is the smallest number m = µ(X ) such that

ker(V≤m(X )T ) = ∅ ⇐⇒ rank(V≤m(X )) = n.

Note that such m exists (is finite). Indeed, if X = {x1, . . . , xn}, then µ(X ) ≤ n− 1 because the
following Lagrange interpolation polynomials, each of total degree n− 1, are linearly independent:{

ℓi(x) =
∏
j ̸=i

Hj(x)

Hj(xi)

}n

i=1

,

where Hj is some affine hyperplane containing xj and not containing every other xk, k ̸= j. Cf.
[40, Definition 3],[17] and [41].
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3 Eigenvalues of smooth kernel matrices in the flat limit

In this section, we consider the kernel matrix Kϵ = Kϵ(X ) for a fixed infinitely smooth kernel K
and a fixed set X ⊂ Rd of n pairwise distinct points. Our main interest is in the asymptotic order
of the decay of the eigenvalues of Kϵ in the flat limit ϵ→ 0. We employ the standard O(·) notation.

Our main result gives an upper bound on the decay rates of all the eigenvalues.

Theorem 1. Let m = µ(X ) be the discrete moment order of the set X . For any infinitely smooth
kernel K ∈ C(∞,∞)(Ω) with 0 ∈ Ω, and small enough ϵ, the eigenvalues of Kϵ(X ) split into m + 1
groups

λ0,0 = O(1), {λ1,j}t1j=1 = O(ϵ2), . . . , {λm,j}tmj=1 = O(ϵ2m),

tk := rank(V≤k(X ))− rank(V≤k−1(X )), k = 1, 2, . . . ,m.

Remark 1. Theorem (1) is valid also for kernels in C(m+1,m+1).

Proof. We start by writing the Taylor expansion of Kϵ around 0 as equation (55) in [1]:

Kϵ = V≤m∆mW∆mV
T
≤m + ϵm+1(V≤m∆mW1(ϵ) +W2(ϵ)∆mV

T
≤m) + ϵ2(m+1)W3(ϵ) (9)

where Wi(ϵ) = O(1), W = WK
≤m and ∆m(ϵ) = diag(1, ϵIh1 , . . . , ϵ

mIhm) ∈ Rpm×pm . For the full
derivation of (9), see section A in the Appendix.

Let V = V≤m where V = [V0 . . . Vm] = [V≤m−1 Vm], and tk := rank(V≤k) − rank(V≤k−1) as
defined in the theorem. In [1] only the generic case tk = hk−hk−1 is considered. Here we generalize
Theorem 6.1 in [1] to the case where the multivariate Vandermonde matrices V≤k are not necessarily
full rank.

Consider the full QR decomposition of V≤m−1 with column pivoting, as elaborated in Section
5.4.2, specifically, formula (5.4.6) in the book [18]:

V≤m−1Pm−1 = [Q≤m−1 Q⊥]

[
R11 R12

0 0

]
= Q

[
R
0

]
where Q≤m−1 ∈ Rn×rm−1 , Q⊥ ∈ Rn×tm , R11 ∈ Rrm−1×rm−1 , R ∈ Rrm−1×pm−1 , rm−1 + tm = n and
Pm−1 is a permutation matrix.

We have [Q≤m−1 Q⊥]
TV≤mP =

[
R QT

≤m−1Vm
0 QT

⊥Vm

]
andQT

⊥V≤mP = [0 QT
⊥Vm] where P :=

[
Pm−1 0
0 Ihm

]
.

Note that for every permutation matrix, we have P−1 = P T .

Thus we can rewrite the expansion (9) as follows:

Kϵ = V≤mPP
T∆mPP

TWPP T∆mPP
TV T

≤m

+ ϵm+1(V≤mPP
T∆mPP

TW1(ϵ) +W2(ϵ)PP
T∆mPP

TV T
≤m)

+ ϵ2(m+1)W3(ϵ)

Kϵ = Ṽ≤m∆̃mW̃ ∆̃mṼ
T
≤m + ϵm+1(Ṽ≤m∆̃mW̃1(ϵ) + W̃2(ϵ)∆̃mṼ

T
≤m) + ϵ2(m+1)W3(ϵ)

where Ṽ≤m := V≤mP , ∆̃m := P T∆mP = diag(ϵi1Ihi1
, ..., ϵimIhim

, ϵmIhm) due to Lemma 7, W̃ :=

P TWP , W̃1(ϵ) := P TW1(ϵ) and W̃2(ϵ) :=W2(ϵ)P .
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Multiplying by QT
⊥ and its transpose we get:

QT
⊥KϵQ⊥ = [0 QT

⊥Vm]∆̃W̃ ∆̃[0 QT
⊥Vm]T

+ ϵm+1[0 QT
⊥Vm]∆̃W̃1Q⊥

+ ϵm+1QT
⊥W̃2∆̃[0 QT

⊥Vm]T

+ (ϵm+1QT
⊥W3Q⊥ϵ

m+1).

We can also write the above as:

QT
⊥KϵQ⊥ = O(ϵ2m)QT

⊥VmŴV T
mQ⊥

+O(ϵ2m+1)(QT
⊥VmŴ1Q⊥

+QT
⊥Ŵ2VmQ⊥)

+O(ϵ2(m+1)),

where Ŵ is the lower right hm × hm sub-matrix of W̃ . Thus, by the Courant-Fischer principle, Kϵ

has at least tm = dim(Q⊥) eigenvalues which decay as fast as O(ϵ2m).

For any k = 1, ...,m − 1, let V≤k−1Pk−1 = [Q≤k−1 Q⊥,k−1]

[
R≤k−1

0

]
be the full QR decom-

position of V≤k with pivoting, where Q≤k−1 ∈ Rn×[n−(tk+···+tm)], Q⊥,k−1 ∈ Rn×[tk+···+tm] and
R≤k−1 ∈ R[n−(tk+···+tm)]×pk−1 .

We can apply the same argument on Q⊥,k−1 and V≤k−1 by induction, then we get that there are
at least tk + ...+ tm eigenvalues which decay as fast as O(ϵ2k) and there are at least tk+1 + ...+ tm
eigenvalues which decay as fast as O(ϵ2(k+1)). Therefore, there are at least tk eigenvalues which
decay as fast as O(ϵ2k). Since

∑m
i=0 ti = n (assume t0 = 0) we get that there are exactly tk

eigenvalues decaying (at least) like ϵ2k when ϵ goes to 0.

The bounds of Theorem 1 are not necessarily tight. As we show in the next lemma, the exactness
of the asymptotic orders depends on the analytic properties of the kernel K and the geometry of
X , therefore additional assumptions ought to be made on both of those objects in order to obtain
matching lower bounds.

Lemma 1. For K ∈ C(∞,∞)(Ω) and X ⊂ Rd, there exists C = C(X ,K) ∈ R such that

det(Kϵ(X )) = ϵ2
∑m

i=0 iti(C +O(ϵ)), ϵ→ 0.

In particular, C = det
(
R̃WR̃T

)
where R̃ ∈ Rn×pm is full rank, and W = WK

≤m ∈ Rpm×pm is the

Wronskian matrix of K as in Definition 4.

Proof. Consider the matrices Q⊥,k−1 defined in the proof of Theorem 1. Let Mk ⊆ range(Q⊥,k−1)
and Mk ⊥ range(Q⊥,k) where Mk ∈ Rn×tk and Q⊥,−1 = Rn×n. Define

Q⊥ :=
(
M0,M1, ...,Mm

)
∈ Rn×n

It is easy to see that QT
⊥V≤m is upper triangluar, with the block-diagonal part given by

R̃ := blkdiag
(
QT

⊥V≤m

)
= diag

{
MT

0 V0, ...,MT
mVm

}
.

6



Each diagonal block of R̃ is full rank by definition, therefore R̃ is full rank.
Therefore by [1, Lemma 6.4] we have

E−1
n QT

⊥V≤m∆m = R̃+O(ϵ)

where En = diag{1, ϵIt1 , ..., ϵmItm} ∈ Rn×n and R̃ ∈ Rn×pm .
Thus, using (9), we get that

E−1
n QT

⊥KϵQ⊥E
−1
n = (R̃+O(ϵ))W (R̃T +O(ϵ))

+ ϵm+1((R̃+O(ϵ))W1(ϵ)Q⊥E
−1
n

+ E−1
n QT

⊥W2(ϵ)(R̃
T +O(ϵ)))

+ ϵ2(m+1)E−1
n QT

⊥W3(ϵ)Q⊥E
−1
n

= R̃WR̃T +O(ϵ)

where the last equality follows from ϵ2(m+1)E−1
n = O(ϵ) and R̃WR̃T ∈ Rn×n . This implies that

ϵ−2
∑m

j=0 jtj det(Kϵ) = det(R̃WR̃T +O(ϵ)) = det(R̃WR̃T ) +O(ϵ) (by Lemma (8) in the Appendix)
with C = det(R̃WR̃T ).

Corollary 1. Suppose K is symmetric and analytic (in both variables) in the neighborhood of (0,0).
The scaling of the eigenvalues as given in Theorem 1 is exact, if and only if det(R̃WR̃T ) ̸= 0.

Proof. By Theorem 1 and [1, Theorem 2.9], the eigenvalues of Kϵ(X ) satisfy

λ0,0 = ϵ0(λ̃0,0 +O(ϵ)), {λ1,j}t1j=1 = {ϵ2(λ̃1,j +O(ϵ))}t1j=1, ..., {λm,j}tmj=1 = {ϵ2m(λ̃m,j +O(ϵ))}tmj=1,

where tk := rank(V≤k) − rank(V≤k−1) and m = µ(X ), and λ̃s,j do not depend on ϵ (but may be
zero). By Lemma 1 we have that

∣∣Kϵ(X )
∣∣ = ϵ2

∑m
i=0 iti

{∣∣R̃WR̃T
∣∣+O(ϵ)

}
.

On the other hand, the determinant is the product of eigenvalues, therefore

∣∣Kϵ(X )
∣∣ = n∏

j=1

λj = λ0,0

t1∏
j=1

λ1,j ...

tm∏
j=1

λm,j = (λ̃0,0 +O(ϵ))

t1∏
j=1

ϵ2(λ̃1,j +O(ϵ))...

tm∏
j=1

ϵ2m(λ̃m,j +O(ϵ))

= ϵ2
∑m

i=0 iti

{ m∏
s=1

ts∏
j=1

λ̃s,j +O(ϵ)

}
.

Now we just compare the two expressions above. In one direction, if the scaling is exact

then λ̃s,j ̸= 0 for all 0 ≤ s ≤ m and 0 ≤ j ≤ ts, which implies
∣∣∣R̃WR̃T

∣∣∣ ̸= 0. In the other

direction, if there are ℓ ≥ 1 zeros λ̃k ∈ {λ̃s,j}j=1,...,tm
s=1,...,m and λ̃k = 0 for k = 1, ..., ℓ, then

∣∣Kϵ

∣∣ =

ϵℓ+2
∑m

i=0 iti(
∏n

k=ℓ+1 λ̃k +O(ϵ)), forcing
∣∣∣R̃WR̃T

∣∣∣ = 0.
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4 Eigenvalues of the multidimensional Dirichlet kernel

In this section we consider the specific case of the multidimensional Dirichlet kernel, which is directly
motivated by the problem of super-resolution as outlined in the Introduction. Let S ⊂ Rd denote a
finite set of frequencies, symmetric around the origin, where the spectral data (2) is available. We
first derive a generic sufficient condition on S which ensures that the scaling order of Theorem 1 is
exact. Later we show that this condition is satisfied by S = GN , the regular symmetric grid in Rd

of side length 2N + 1, for large enough N .

Definition 6. For S ⊂ Rd, symmetric around 0 ∈ Rd, the (real-valued) Dirichlet kernel DS is
defined as follows:

DS(x) =
∑
ω∈S

exp (ı⟨x, ω⟩) .

By a slight abuse of notation, we also denote by DS the corresponding bi-multivariate kernel:

DS(x, y) = DS(x− y) =
∑
ω∈S

exp (ı⟨x− y, ω⟩) . (10)

Given X ⊂ Rd and ϵ > 0, the corresponding Dirichlet kernel matrix and its flat limit version are
denoted as:

D(X ,S) :=
[
DS(x, x

′)
]
x,x′∈X ,

Dϵ(X ,S) := D(ϵX ,S) =
[
DS(ϵx, ϵx

′)
]
x,x′∈X .

(11)

In addition, if S = S1 × ...× Sd is a tensor product grid, we have DS(x, y) =
∏d

j=1DSj (xj , yj).

4.1 A nondegeneracy condition

Note that DS is a translation invariant, symmetric and analytic kernel. Recall the definition (8) of
the Wronskian matrix for an arbitrary kernel. Set W := WDS

≤m. By Corollary 1, in order to show

tightness, it is sufficient to demonstrate that C := det(R̃WR̃T ) ̸= 0. In the following lemma, we
show that this holds under a certain (more or less natural) non-degeneracy assumption on the set
S.

Lemma 2. For W :=W≤m as defined above, det(R̃WR̃T ) > 0 holds whenever rank(V≤m(S)) ≥ n.

Remark 2. Note that contrary to Section 3, the Vandermonde matrix V≤m is here evaluated on
the set S (and not on X ), while the polynomial total degree is still m = µ(X ).

Proof of Lemma 2. We first show that W is positive semidefinite. Directly from (8) and (10), we
have

W =

[
D(α,β)

S (0, 0)

α!β!

]
α,β∈Pm

=

[∑
ω∈S

(iω)α(−iω)β

α!β!

]
α,β∈Pm

=

[ ∑
ω=(ω1,...,ωd)∈S

(i)|α|(−i)|β|ωα1+β1
1 · ... · ωαd+βd

d

α!β!

]
α,β∈Pm

= FV T
≤m(S)V≤m(S)F ∗,

8



where V≤m(S) =
[
(ω)α

]α∈Pm

ω∈S is the multivariate Vandermonde matrix and F := diag
(
i|α|

α!

)
α∈Pm

.

Let B := FV T
≤m(S), and consider B = UΣT ∗ the singular value decomposition of B. We therefore

have W = BB∗ = UΣ2U∗, implying that W is positive semidefinite (since W is Hermitian and
has non-negative eigenvalues). Since R̃ is full rank by Lemma 1, it follows that R̃WR̃T is positive
semidefinite as well, implying that det(R̃WR̃T ) ≥ 0. To ensure det(R̃WR̃T ) > 0, we require that
R̃WR̃T be positive definite. The latter condition is satisfied when rank(R̃WR̃T ) ≥ n, which is
equivalent to rank(W ) = rank(V≤m(S)) ≥ n.

Remark 3. For d = 1, we have that m = n − 1 and pn−1 =
(
n
1

)
= n, meaning that the condition

rank(V≤n−1(S)) ≥ n in Lemma (2) is satisfied as long as the sampling set S contains at least n
distinct points.

Remark 4. Given the condition rank(V≤m(S)) ≥ n in Lemma (2), we aim to find a sampling set
S∗ with pℓ points where pℓ−1 < n and pℓ ≥ n such that rank(V≤ℓ(S∗)) ≥ n which is independent of
m = µ(X ) (the geometry of the nodes).

By applying Corollary 1, we immediately obtain the following result.

Lemma 3. Assume that the sampling set S satisfies the condition rank(V≤m(S)) ≥ n. Then the
eigenvalues of Dϵ(X ,S) split into m+ 1 groups

λ0,0 = ϵ0(λ̃0,j +O(ϵ)), {λ1,j}t1j=1 = {ϵ2(λ̃1,j +O(ϵ))}t1j=1, ..., {λm,j}tmj=1 = {ϵ2m(λ̃m,j +O(ϵ))}tmj=1,

where tk := rank(V≤k(X ))− rank(V≤k−1(X )) and λ̃s,j ̸= 0 for all 0 ≤ s ≤ m and 0 ≤ j ≤ ts.

4.2 Geometric characterization condition and the uniform grid

The rank condition in Lemma 2 is nontrivial to verify for a given set S. In this section we provide an
explicit example of such a set, namely, the uniform grid GN in Rd. Our approach is a straightforward
application of well-known results in multivariate polynomial interpolation, adapted to our setting.

We first recall some definitions and results from [37].

Definition 7 ([37], p.194). Let P be a linear subspace of the polynomial ring Π := R [x1, ..., xd]. The
polynomial interpolation problem with respect to a (finite) set of linearly independent functionals
Θ ⊂ Π′ (Π′ is the dual space) is said to be poised for P, if for any Y ∈ R#Θ there exists a unique
f ∈ P such that Θf = Y .

Theorem 2 ([37] p.194). For P ⊂ Π, and a finite set Θ ⊂ Π′ as above, the following statements
are equivalent:

1. The polynomial interpolation problem with respect to Θ is poised for P.

2. dimP = #Θ and ΘP =
[
θp : θ ∈ Θ, p ∈ P

]
satisfies |ΘP | ≠ 0 for any basis P of P.

For ΘS := {δξ}ξ∈S the set of point evaluation functionals on S, and the standard monomial

basis Pn of polynomials of total degree ≤ n, we have in particular dimPn = #S =
(
n+d
d

)
= pn, and

the matrix ΘSP = V := V≤n(S) is our Vandermonde matrix. Therefore, if we can find a sample set
S such that the polynomial interpolation problem with respect to ΘS is poised for Pn, this would
immediately imply that |V | ≠ 0. Examples of such situations are provided in [10, 17], and it turns
out that there is a general sufficient condition which ensures poisedness.
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Definition 8 ([10]). A lattice J := {x1, ..., xN} of N = pn distinct nodes of Rd is said to satisfy
the Geometric Characterization Condition (GC) (of degree n) if corresponding to each node
xi there exist n distinct hyperplanes Gi1, ..., Gin such that:

1. xi does not lie on any of these hyperplanes, and

2. all the other nodes in J lie on at least one of these hyperplanes.

The following result is fundamental for our purposes. We give a short proof for completeness.

Theorem 3 (Theorem 1 in [10]). Let J := {x1, ..., xN} be a lattice of N = pn distinct nodes of
Rd. If J satisfies the GC condition as in Definition 8, then the polynomial interpolation problem
with respect to J is poised for Pn.

Proof. Let Y = {yi}i=1,...,N be an arbitrary vector of values. It can be directly verified that the
following polynomial of total degree ≤ n interpolates Y on J :

P (x) =

N∑
i=1

yi

n∏
j=1

Gij(x)

Gij(xi)
.

Since Y was arbitrary, uniqueness follows.

Next, we recall the definition of n-th order principal lattice [31].

Definition 9. Let In = {0, 1n ,
2
n , ..., 1}. Further, denote by Xi := ei the simplex vertices with ei

being the i-th element in standard basis of Rd, and furthermore put X0 := 0 ∈ Rd. Then the n-th
order principal lattice (corresponding to the coordinate simplex) is defined as

B(n, d) :=

{
x ∈ Rd

∣∣∣x =

d∑
i=0

γiXi,

d∑
i=0

γi = 1, γi ∈ In

}
.

Note that B(n, d) contains precisely pn =
(
n+d
n

)
points.

It was proven in [10] Theorem 4, that B(n, d) satisfies the GC condition which, by Theorem 3,
guarantees poisedness [17]. This is almost what we want, and indeed as we will show, the uniform
grid contains a scaled principal lattice.

Lemma 4. Let Jn := {0, 1, ..., n}, and put

A(n, d) := n ·B(n, d) =

{
x ∈ Rd

∣∣∣x =
d∑

i=0

γiXi,
d∑

i=0

γi = n, γi ∈ Jn

}
⊂ Gn.

Then the set A(n, d) satisfies the GC condition of degree n.

Proof. The proof is very similar to the one in [10] for B(n, d), and we provide it for completeness.
Let {γk : Rd → R}k=0,...,d be the barycentric coordinate functions associated with the simplex

X0, ..., Xd. Define the following hyperplanes Hkm := {x|γk(x) = m}, k = 0, ..., d, m = 0, ..., n.
These hyperplanes contain all the nodes in A(n, d).
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Figure 1: Demonstration of the proof of Lemma 4.

Now let x ∈ A(n, d) be a lattice node, and let βk := γk(x). For each k = 0, .., d with βk > 0,

the union of the hyperplanes {Hkj}j=0,...,βk−1
k=0,...,d doesn’t contain the node x. Since

∑d
k=0 βk = n we

have exactly n hyperplanes in the set {Hkj}j=0,...,βk−1
k=0,...,d .

We still have to show why the union of {Hkj}j=0,...,βk−1
k=0,...,d contains all the other nodes. Let

y ̸= x ∈ A(n, d). Again, we have
∑d

k=0 γk(y) = n, therefore there is at least one k ∈ {0, ..., d} such
that γk(y) < γk(x) = βk.

To clarify the proof, we give an example for d = 2, n = 2. For the node x = (0, 1) we have
γ0(x) = 1, γ1(x) = 0, γ2(x) = 1 because x = 1 · (0, 0)+ 0 · (1, 0)+ 1 · (0, 1). Following the proof, H00

and H20 are the hyperplanes which contain all the nodes except for x (see figure 1).

Remark 5. For the scaled principal lattice A(n, d), the interpolation polynomial P (x) of degree
≤ n for any {ya}a∈A(n,d) is given by:

P (x) =
∑

a∈A(n,d)

ya

d∏
k=0

γk(a)−1∏
m=0

γk(x)−m

γk(a)−m
.

We are finally in a position to state and prove the main result of this section.

Theorem 4. Let X ⊂ Rd be a finite set of n distinct points in Rd, and let m = µ(X ) be its discrete
moment order. Let ℓ be the unique integer such that pℓ−1 < n ≤ pℓ. Then for every N ≥ ℓ we have

rank(V≤m(GN )) ≥ n,

so the conclusion of Lemma 3 holds for S = GN .

Proof. Using Lemma 4 and Theorems 2 and 3, we get∣∣V≤ℓ(A(ℓ, d))
∣∣ ̸= 0 =⇒ rank(V≤ℓ(A(ℓ, d))) =

(
ℓ+ d

d

)
= pℓ ≥ n

A(ℓ, d) ⊂ Gℓ =⇒ rank(V≤ℓ(Gℓ)) ≥
(
ℓ+ d

d

)
≥ n.
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Now notice that since rankV≤m(X ) = n we must have pm ≥ n and therefore m ≥ ℓ. This implies

rank(V≤m(GN )) ≥ rank(V≤m(Gℓ) ≥ rank(V≤ℓ(Gℓ)) ≥ n,

finishing the proof.

5 Vandermonde matrices in the super-resolution regime

In this section we come back to the super-resolution problem, and consider the Vandermonde
matrices U(x1, . . . , xn;GN ) in (3) in the single cluster setting. We prove the multidimensional
analogue of [7, Theorem 2.3], with the caveat that the geometry of the nodes stays fixed as SRF ≫ 1.
We start by defining the cluster geometry. Naturally, since the sampling set is an integer grid, we
must restrict the nodes to Td := [−π, π)d ≡ (R mod 2π)d to avoid aliasing.

Definition 10. For x, y ∈ Td, we denote the wrap-around distance by

∥x− y∥Td := min
r∈(2πZ)d

∥x− y + r∥∞.

Definition 11. Let X = {x1, ..., xn} ⊂ Td. If for some τ > 1 and 0 < ∆ < π/τ we have

∀x, y ∈ X , x ̸= y : ∆ ≤ ∥x− y∥Td ≤ τ∆,

then X is said to form an (∆, τ, n)-cluster.

In what follows we fix a node set Y = {y1, . . . , yn} ⊂ Td such that the (non-wrapped) minimal
distance between any two nodes is

ρ = ρ(Y) := min
i ̸=j

∥yi − yj∥∞.

Now let X = ∆Y with ∆ < 1
2π , so that X forms an (∆′, τ ′, n)-cluster for ∆′ = ρ∆ and some

τ ′ ≤ 2π
ρ . (Otherwise, there exist y, y′ ∈ Y such that ∥y − y′∥Td ≥ 2π

ρ ∆′ = 2π∆, a contradiction).

Further, let GN = {0,±1, ...,±N}d be the uniform symmetric grid of side length 2N + 1.
Let U := U(x1, . . . , xn;GN ). Denote ϵ := N∆. We have

U∗U = D(X ,GN ) = D
(
ϵ
Y
N
,GN

)
= Dϵ

(Y
N
,GN

)
.

We further define the rescaled Dirichlet kernel

K(x, y) = KN (x, y) :=
1

(2N)d
DGN

(x/N, y/N)

=⇒ Kϵ(Y) =
1

(2N)d
Dϵ

(Y
N
,GN

)
= DN (X ).

We have the following result.

Theorem 5. With the above notations, let m = µ(Y) = µ(X ) be the discrete moment order of Y.
For every ϵ0 > 0, α ∈ (0, 1) there exists N0 such that for all N ≥ N0 and αϵ0 < N∆ < ϵ0, the

eigenvalues of DN split into m+ 1 groups

λ0,0(DN ) ≍ (N∆)0, {λ1,j(DN )}t1j=1 ≍ (N∆)2, ..., {λm,j(DN )}tmj=1 ≍ (N∆)2m,

where tk := rank(V≤k(X ))− rank(V≤k−1(X )), k = 1, . . . ,m.
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Proof. With the identification DN (X ) = Kϵ(Y) as above, we would like to apply Theorem 1 and
Corollary 1 to the kernel K = KN . However, K depends on N , so we need to make sure that all
the estimates in the proofs are uniform in N .

Definition 12 (sinc kernel). Let sinc(x) :=

{
sin(x)

x , if x ̸= 0,

1, if x = 0.
. Given X ∈ Rd, the corresponding

sinc kernel matrix is defined as follows:

Sinc(X ) :=

[ d∏
i=1

sinc(xi − x′i)

]
x,x′∈X

(12)

For ϵ > 0, the flat limit version of the sinc kernel matrix is:

Sincϵ(X ) :=

[ d∏
i=1

sinc(ϵxi − ϵx′i)

]
x,x′∈X

(13)

Outline of the proof: we aim to prove that the eigenvalues of DN converge to Sinc kernel when
N → ∞. The scaling of the eigenvalues of Sinc can be obtained using Corollary 1 (the constants
λ̃k,j don’t depend on N). First we show element-wise convergence of DN to sinc and equicontinuity
of DN in ϵ < ϵ0 to show uniform convergence of DN to sinc (uniform in ϵ < ϵ0 and independent of
N). Then using the Bauer–Fike Theorem, we prove convergence of the eigenvalues.

We start with some definitions.

Theorem 6 (The Bauer–Fike Theorem). For a diagonalizable matrix A let E be it’s eigenvectors
matrix, A = EΛE−1 where Λ is a diagonal matrix. Let µ be an eigenvalue of AN , then there exists
λ ∈ Λ(A) such that

|λ− µ| ≤ κp(E)∥A−AN∥p (14)

where κp(E) := ∥E∥p∥E−1∥p is the condition number of E associated with the norm ∥ · ∥p.

Definition 13 (Element-wise convergence). Let {AN}∞N=1, where AN ∈ Rs×s, be a sequence of
matrices, and let A ∈ Rs×s be a matrix. The sequence {AN}∞N=1 is said to converge element-wise
to A if the following condition is satisfied:

For every δ > 0, there exists a positive integer M(δ) such that for all N ≥M(δ), the inequality∣∣(AN )i,j − (A)i,j
∣∣ ≤ δ

holds for all 1 ≤ i, j ≤ s.

Definition 14 (Equicontinuity). Let {fn(x)} be a sequence of functions. {fn(x)} is equicontinuous
if for every δ > 0, there exists ν > 0 (independent of n) such that for all n and all x, y ∈ [a, b] with
|x− y| < ν we have |fn(x)− fn(y)| < δ.

Definition 15 (Uniform convergence). A sequence of functions {fn(x)} converges uniformly to
f(x) on S if for every ϵ > 0, there exists an integer N such that for all n ≥ N and for all x ∈ S,
|fn(x)− f(x)| < ϵ.

Theorem 7. Let C(J) be the space of continuous functions on a closed interval J ⊂ R. A sequence
in C(J) is uniformly convergent if and only if it is equicontinuous and converges pointwise to a
function.
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Proof. The first direction is an immediate corollary of Theorem 7.25 in [35]. Since the sequence
converges pointwise, we can replace the subsequence in the proof of (b) by the sequence itself. The
second direction is Theorem 7.24.

Lemma 5. For every ϵ > 0 and X ∈ Rd, the Dirichlet kernel matrix DN (X ) converges element-wise
to the sinc kernel matrix Sincϵ(Y) when N → ∞.

Proof.(
DN (X )

)
i,j

=
1

(2N)d
(
Dϵ

(Y
N
,GN

))
i,j

=
1

(2N)d
DGN

(ϵ(
yi
N

−yj
N

)) =
1

(2N)d

∑
ω∈GN

exp
(
ı⟨ϵ( yi

N
− yj
N

), ω⟩
)

(15)
Denote by y := yi − yj and y := (y(1), . . . , y(d)). First, we consider the case where d = 1:

1

2N

N∑
k=−N

exp(ıϵk
y

N
) =

1

2N
(1 + 2

N∑
k=1

cos (ϵk
y

N
)) =

1

2N

sin((N + 1
2)

ϵy
N )

sin( ϵy
2N )

→N→∞
1

2N

sin((1 + 1
2N )ϵy)

ϵy
2N

→N→∞
sin(ϵy)

ϵy
= sinc(ϵy).

For d > 1, using the above, we get

1

(2N)d

∑
ω∈GN

exp
(
ı⟨ϵ( y

N
), ω⟩

)
=

d∏
i=1

1

2N

N∑
k=−N

exp(ıϵk
y(i)

N
) →N→∞

d∏
i=1

sinc(ϵy(i)).

We proved that each entry of DN (X ) converges point-wise to each entry of Sincϵ(Y). Now we
show that this convergence is uniform for ϵ ∈ [0, ϵ0] for a given ϵ0. We show that using Theorem 7.
First we need to show that the sequence {

(
DN (X )

)
i,j
} is equicontinuous.

For fixed y ∈ Y, let fN (ϵ) := 1
2N

∑N
k=−N exp(ıϵk y

N ) and f(ϵ) := sinc(ϵy). We prove the following
result.

Lemma 6. Let ϵ0 > 0 be given. For every δ > 0 there exists ν > 0 (independent of N) such that
for all N and all ϵ, ϵ′ ∈ [0, ϵ0] with |ϵ− ϵ′| < ν we have |fn(ϵ)− fn(ϵ

′)| < δ.

Proof. Let δ > 0. we want to find ν(δ) > 0 such that for all N and ϵ, ϵ′ ∈ [0, ϵ0] with |ϵ− ϵ′| < ν we
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have that |fN (ϵ)− fN (ϵ′)| < δ. Using that |1− eix| = 2| sin(x2 )| and sin(x) ≤ x for x ∈ [0, π2 ] we get

|fN (ϵ)− fN (ϵ′)| = | 1

2N

N∑
k=−N

exp(ıϵk
y

N
)− 1

2N

N∑
k=−N

exp(ıϵ′k
y

N
)|

= | 1

2N

N∑
k=−N

exp(ıϵk
y

N
)(1− exp(ı(ϵ− ϵ′)k

y

N
))|

≤ 1

2N

N∑
k=−N

|1− exp(ı(ϵ− ϵ′)k
y

N
)|

=
1

2N

N∑
k=−N

2| sin((ϵ− ϵ′)k
y

2N
)|

≤ 2

2N

N∑
k=0

2k|ϵ− ϵ′| y
2N

=
1

N2

N +N2

2
νy

= (
1

2N
+

1

2
)yν ≤ yν.

Thus we choose ν := δ
y . The same holds for fN (ϵ) := 1

(2N)d

∑
ω∈GN

exp
(
ı⟨ϵ( y

N ), ω⟩
)
.

Using Lemma 5 and 6 together with Theorem 7 we get the following Corollary.

Corollary 2. Let ϵ0 be given. For every δ > 0 there exists M =M(ϵ0, δ) such that for all N > M∣∣(DN (X )
)
i,j

−
(
Sincϵ(Y)

)
i,j

∣∣ ≤ δ, ∀ϵ ∈ [0, ϵ0]. (16)

Proof. We take ν in Definition 14 to be the minimum of all the ν
(ℓ)
i,j according to the proof of

Lemma 6, with ℓ = 1, . . . , d. Note that for y
(ℓ)
i,j = 0 we have ν

(ℓ)
i,j = ∞.

Corollary 3 (Uniform convergence of eigenvalues). Let ϵ0 > 0 be given. For every δ′ > 0 there

exists M =M(ϵ0, δ
′) s.t. for all N > M there is an eigenvalue µ

(N)
k of DN (X ) with

|λ(ϵ)k − µ
(N)
k | ≤ δ′, ∀ϵ ∈ [0, ϵ0] (17)

where λ
(ϵ)
k is an eigenvalue of Sincϵ(Y).

Proof. Since Sincϵ(Y) is a symmetric matrix, the eigenvectors matrix E is orthogonal in the eigen-
value decomposition of Sincϵ(Y) i.e Sincϵ(Y) = EΛE−1. Thus we have κ2(E) = 1. Using the
Bauer–Fike theorem 6 with Corollary 2 and δ := δ′

n
√
n
, we get:

|λ− µ| ≤ ∥Sincϵ(Y)−DN (X )∥2
≤

√
n∥ Sincϵ(Y)−DN (X )∥∞

=
√
nmax

i

n∑
j=1

∣∣(Sincϵ(Y))i,j − (DN (X ))i,j
∣∣

≤
√
nnδ = δ′.
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To complete the proof of Theorem 5, we choose δ′ = O

(
(αϵ0)

2m

)
in (17) and apply Corollary 1.

The only remaining question is to show that det(RWR) ̸= 0. We will show that the limit N → ∞
the rank of W = limN→∞

1
(2N)d

WN is full, and as a result, det
(
R̃WR̃T

)
is uniformly bounded

away from zero. By definition of the Wronskian, we write

1

(2N)d
WN =

1

(2N)d

[D(α,β)
GN

( x
N ,

y
N )|x,y=0

α!β!

]
α,β∈Pm

=

[
1

(2N)d

∑
ω∈GN

1

N |α|+|β|
(iω)α(−iω)β

α!β!

]
α,β∈Pm

=

[
1

(2N)d

∑
ω=(ω1,...,ωd)∈GN

(i)|α|(−i)|β|

α!β!

(ω1

N

)α1+β1 · ... ·
(ωd

N

)αd+βd

]
α,β∈Pm

=

[ d∏
j=1

N∑
k=−N

1

2N

(i)αj (−i)βj

αj !βj !

( k
N

)αj+βj

]
α,β∈Pm

.

We get that each entry of 1
(2N)d

WN is a Riemann sum, thus as N → ∞ we get a multiple integral:

lim
N→∞

d∏
j=1

N∑
k=−N

1

2N

(i)αj (−i)βj

αj !βj !

(
k

N

)αj+βj

=
1

2d

∫
[−1,1]d

(i)|α|(−i)|β|

α!β!
xα+β dx

Thus we get:

W = lim
N→∞

1

(2N)d
WN =

[
1

2d

∫
[−1,1]d

(i)|α|(−i)|β|

α!β!
xα+β dx

]
α,β∈Pm

.

It is immediately seen that W is none other than the Gram matrix for the monomials {xα}α∈Pm :

Wα,β = ⟨xα, xβ⟩ = 1

2d

∫
[−1,1]d

(i)|α|(−i)|β|

α!β!
xα+β dx.

Since the set of monomials is linearly independent, we have that W is positive definite. Thus W is

full rank, and as a result, det
(
R̃WR̃T

)
> 0. This completes the proof of Theorem 5.

Remark 6. During the final stages of preparation of our manuscript, we became aware that Weilin
Li is working on a related topic [24]. Relative to our results, more explicit conditions and constants
are derived for the scaling of the smallest singular value of the multivariate Vandermonde matrix
(we consider the entire spectrum); multi-cluster geometry is investigated; only cube and spherical
sampling sets are considered; the decay rate in the case of uniform dilations of generic sets is not
sharp; finally, a form of geometric characterization condition is used to describe the node geometry
(as opposed to the sequence {tk} in our work).

6 Numerical Experiments

In this section, we describe some numerical example to validate our results and investigate their
applicability to the problem of super-resolution.
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(a) Parabola geometry. (b) General position geometry.

Figure 2: Eigenvalues of Dirichlet kernel with samples on the grid for the different node geometries.
The x-axis is ϵ denoting the smallest distance between the nodes.

6.1 Dirichlet kernel eigenvalue scaling

We start with the numerical study of the eigenvalues of the Dirichlet matrix Dϵ(X ,Gn), confirming
the scaling predicted by Lemma 3. Let d = 2, n = 6 and X = {(xi, yi)}ni=1. We checked two
scenarios:

1. All points satisfy yi = x2i . We get that rank(V≤3) = 6, where

V≤3 =



1 x1 y1 x21 x1y1 y21 x31 x21y1 x1y
2
1 y31

1 x2 y2 x22 x2y2 y22 x32 x22y2 x2y
2
2 y32

1 x3 y3 x23 x3y3 y23 x33 x23y3 x3y
2
3 y33

1 x4 y4 x24 x4y4 y24 x34 x24y4 x4y
2
4 y34

1 x5 y5 x25 x5y5 y25 x35 x25y5 x5y
2
5 y35

1 x6 y6 x26 x6y6 y26 x36 x25y5 x6y
2
6 y36



=



1 x1 x21 x21 x31 x41 x31 x31 x41 x61
1 x2 x22 x22 x32 x42 x32 x32 x42 x62
1 x3 x23 x23 x33 x43 x33 x33 x43 x63
1 x4 x24 x24 x34 x44 x34 x34 x44 x64
1 x5 x25 x25 x35 x45 x35 x35 x45 x65
1 x6 x26 x26 x36 x46 x36 x35 x46 x66

 =
[
V0 | V1 | V2 | V3

]

We get that

t0 = rank(V≤0) = 1,

t1 = rank(V≤1)− rank(V≤0) = 3− 1 = 2,

t2 = rank(V≤2)− rank(V≤1) = 5− 3 = 2,

t3 = rank(V≤3)− rank(V≤2) = 6− 5 = 1.

The results in Figure 2a confirm the scaling of the eigenvalues.
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2. The set of nodes in X are in general positions. We have rank(V≤2) = 6, where

V≤2 =



1 x1 y1 x21 x1y1 y21
1 x2 y2 x22 x2y2 y22
1 x3 y3 x23 x3y3 y23
1 x4 y4 x24 x4y4 y24
1 x5 y5 x25 x5y5 y25
1 x6 y6 x26 x6y6 y26

 =
[
V0 | V1 | V2

]
.

We get that

t0 = rank(V≤0) = 1,

t1 = rank(V≤1)− rank(V≤0) = 3− 1 = 2,

t2 = rank(V≤2)− rank(V≤1) = 6− 3 = 3.

The results in Figure 2b confirm the scaling of the eigenvalues also in this case.

6.2 Super-resolution

In this section, we consider the super-resolution problem for multidimensional sparse measures de-
scribed in the Introduction, as it was the original motivation for our investigations. We reconstruct
measures of the form (1) from the noisy measurements (2). We consider the asymptotic regime of
constant N and ∆ → 0.

6.2.1 Local Stability

Analogous to some previous studies in the one-dimensional case, e.g. [2, 4], we consider the “local
stability” of the problem to be well-approximated by the error incurred by the nonlinear least
squares (NLS) method applied to the noisy measurements:

{
x̂NLS
j , α̂NLS

j

}n

j=1
= argmin

α̂,x̂

1

2

∑
k∈GN

∣∣∣∣∣∣f̂(k)−
n∑

j=1

α̂je
ı⟨k,x̂j⟩

∣∣∣∣∣∣
2

.

The initial values for the NLS method are taken to be the true parameter values (which are
clearly unknown in practice). Our implementation of the NLS method is based on the Levenberg-
Marquardt algorithm, with the complex residuals converted to real residuals by concatenating the
real and imaginary parts. The results are shown in Figures 3 and 4. To measure the accuracy, we
fitted the scaled error

κ := max
j=1,...,n

∥x̂NLS
j − xj∥∞/σ

to the curve κ ∼ ∆m, where ∆ is the minimal distance between the nodes. It can be seen that the
accuracy crucially depends on the geometry, and is indeed best for the random configuration, and
worst for the single-line configuration (for which the scaling is precisely κ ∼ ∆2n−2 for any d, as
established in previous works on the subject).
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Figure 3: NLS reconstruction, general position/line/parabola, d = 2.
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Figure 4: NLS reconstruction, general position/line/parabola, d = 3.

6.2.2 2D-ESPRIT

We have implemented the 2D ESPRIT algorithm according to [36, Section IV-A]. The experimental
setup was as follows:

1. The number of nodes varied from n = 2 to n = 6.

2. The geometry was either random, a line y = 5x, or a parabola y = 10x2.

3. The ESPRIT algorithm parameters were set as follows: M1 =M2 = 40, L1 = L2 = 10, β1 =
β2 = 0.5.

4. The noise level was set to σ = 10−20.

The results are shown in Figure 5. As for the NLS method, we fitted the scaled error

κ := max
j=1,...,n

∥x̂ESPRIT
j − xj∥∞/σ

to the curve κ ∼ ∆m, where ∆ is the minimal distance between the nodes. As in the NLS case,
it can be seen that the accuracy crucially depends on the geometry, providing best scaling for the
random configuration, and worst scaling for the single-line configuration.

A Taylor Expansion

Let K ∈ C(r,r)(Ω) where Ω is an open neighborhood of 0 and r ≥ m + 1, where m = µ(X ) is
the discrete moment order of X (Definition 5). We recall the Maclaurin expansion for bivariate
functions from [1, section 5]. For ϵx, ϵy such that [0, ϵx], [0, ϵy] ⊂ Ω (where [0, x] is a line segment
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Figure 5: Accuracy of 2D ESPRIT for different geometries.

from 0 to x), we have:

Kϵ(x, y) = K(ϵx, ϵy) =
∑

α,β∈Pm

(ϵx)α(ϵy)β

α!β!
K(α,β)(0, 0)

+
∑

α∈Pm,β∈Hm+1

(ϵx)α(ϵy)β

α!β!
K(α,β)(0, θϵy,αϵy) +

∑
α∈Hm+1,β∈Pm

(ϵx)α(ϵy)β

α!β!
K(α,β)(ηϵx,βϵx, 0)

+
∑

α,β∈Hm+1

(ϵx)α(ϵy)β

α!β!
K(α,β)(ψϵx,ϵyϵx, ξϵx,ϵyϵy),

where {θϵy,α}α∈Pm ⊂ [0, 1] depend on ϵy, {ηϵx,β}β∈Pm ⊂ [0, 1] depend on ϵx and ψϵx,ϵy, ξϵx,ϵy
depend on both ϵx and ϵy.

Let Pm = {α1, . . . , αpm}. Then we can write the above expansion as follows:

K(ϵx, ϵy) =
[
(ϵx)α1 , . . . , (ϵx)αpm

]
W≤m

[
(ϵy)α1 , . . . , (ϵy)αpm

]T
+ ϵm+1

[
(ϵx)α1 , . . . , (ϵx)αpm

]
w1,y(ϵ) + ϵm+1w2,x(ϵ)

T [(ϵy)α1 , . . . , (ϵy)αpm
]T

+ ϵ2(m+1)w3,x,y,

w1,y(ϵ) =
[∑

β∈Hm+1

K(α1,β)(0,θϵy,α1ϵy)
α1!β!

yβ, . . . ,
∑

β∈Hm+1

K(αpm,β)(0,θϵy,αpm
ϵy)

αpm !β! yβ
]T

w2,x(ϵ) =
[∑

α∈Hm+1

K(α,β)(ηϵx,β(ϵx),0)
α!β! xα

]T
β∈Pm

w3,x,y(ϵ) =
∑

α,β∈Hm+1

K(α,β)(ψϵx,ϵy(ϵx), ξϵx,ϵy(ϵy))

α!β!
(ϵx)α(ϵy)β

where w2,x,w1,y : [0, ϵ0] → Rpm are bounded vector functions with ϵ0 > 0 such that ϵ0x, ϵ0y ∈ Ω,
ϵ ∈ [0, ϵ0] and w3,x,y is bounded.

Let ϵ0 > 0 such that ϵ0xi ∈ Ω for xi ∈ X . Thus for 0 ≤ ϵ ≤ ϵ0, the scaled kernel matrix Kϵ

admits the following expansion:

Kϵ = V≤m∆mW∆mV
T
≤m + ϵm+1(V≤m∆mW1(ϵ) +W2(ϵ)∆mV

T
≤m) + ϵ2(m+1)W3(ϵ) (18)

whereW1(ϵ) :=
[
w1,x1(ϵ), . . . ,w1,xn(ϵ)

]
,W2(ϵ) :=

[
w2,x1(ϵ), . . . ,w2,xn(ϵ)

]T
andW3(ϵ) =

[
w3,xi,xj (ϵ)

]n,n
i,j=1

.
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B Auxiliary Lemmas

Lemma 7. Let D ∈ Rk×k be a k × k diagonal matrix and P a permutation matrix corresponding
to a permutation σ, then

PDP T = diag{dσ(1), . . . , dσ(k)}, D = diag{d1, . . . , dk}.

Proof. If P is a permutation matrix corresponding to a permutation σ, then for every vector v ∈ Rk

Pv =

vσ(1)...
vσ(k)



and then for every matrix A =

R1
...
Rk

 ∈ Rk×k, we have

PA =

Rσ(1)
...

Rσ(k)

 .
Now let A = D = diag{d1, . . . , dk}, and take j = 1, . . . , k. Then Rσ(j) = dσ(j)e

T
σ(j). Therefore

Rσ(j)P
T = dσ(j)

(
Peσ(j)

)T
= dσ(j)e

T
j .

Stacking all the rows we get PDP T = diag{dσ(1), . . . , dσ(k)}.

Lemma 8. Let M,B ∈ Rn×n. For ϵ > 0 we have

det(M + ϵB) = det(M) +O(ϵ), ϵ≪ 1. (19)

Proof. Recall formula (0.8.12.3) for sum of matrices in [19]:

det(M + ϵB) =

n∑
k=0

ϵk tr(adjk(M)Ck(B)), (20)

where tr(·) is the trace of matrix, adjk(·) is the k-th adjugate of matrix (0.8.12) and Ck(·) is the
k-th compound (0.8.1). Using the following properties: adj0(M) = det(M) and C0(M) = 1, we
have

det(M + ϵB) = ϵ0 tr(adj0(M)C0(B)) +O(ϵ) = det(M) +O(ϵ), (21)

completing the proof.
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