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Abstract

Given two polynomials P, q we consider the following question: “how large can the index of the first 
non-zero moment m̃k = ∫ b

a P kq be, assuming the sequence is not identically zero?” The answer K to 
this question is known as the moment Bautin index, and we provide the first general upper bound: K �
2 +degq +3(degP −1)2. The proof is based on qualitative analysis of linear ODEs, applied to Cauchy-type 
integrals of certain algebraic functions.

The moment Bautin index plays an important role in the study of bifurcations of periodic solution in 
the polynomial Abel equation y′ = py2 + εqy3 for p, q polynomials and ε � 1. In particular, our result 
implies that for p satisfying a well-known generic condition, the number of periodic solutions near the zero 
solution does not exceed 5 + degq + 3 deg2 p. This is the first such bound depending solely on the degrees 
of the Abel equation.
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1. Introduction

1.1. Polynomial moments and their Bautin index

Throughout this paper P, Q ∈C[z] will denote a pair of polynomials, and p, q their respective 
derivatives. We will denote the degrees of P, Q (resp. p, q) by dP , dQ (resp. dp, dq ). We also fix 
two points a, b ∈ C.

Two related types of moment sequences corresponding to this data3 have been considered in 
the literature,

mk = mk(P,Q) :=
b∫

a

P k(z)Q(z)p(z)dz, k = 0,1,2, . . . (1)

m̃k = m̃k(P, q) :=
b∫

a

P k(z)q(z)dz, k = 0,1,2, . . . (2)

These two moment sequences appear naturally in the study of perturbations of Abel equation, 
and particularly in the study of bifurcation of periodic solutions from the zero solution. This 
connection is explained in detail in Section 1.2. We now proceed to define the moment vanishing 
index, which plays the central role in the study of bifurcations and is the principal subject of the 
present paper.

Definition 1. We define the vanishing index N(P, Q, a, b) to be the first index k such that 
mk(P, Q) �= 0, or ∞ if no such k exists. We define the moment Bautin index N(dP , dQ, a, b)

to be the least k ∈ N with the property that N(P, Q, a, b) � k implies N(P, Q, a, b) = ∞ for 
any P, Q with degP � dP and degQ � dQ.

We define Ñ(P, q, a, b) and Ñ(dP , dq, a, b) analogously, with respect to the moments m̃k .

Remark 2. The moments mk(P, Q) are polynomials in the coefficients of P, Q. Let R denote 
the ring of polynomials in these coefficients and Ik ⊂ R denote the ideal by m0, . . . , mk . Then 
N(dP , dQ, a, b) defined above is the first index for which the chain {√Ik}k∈N stabilizes. In par-
ticular, from noetherianity it follows that this index is well-defined (finite). An analogous remark 
holds for Ñ(dP , dq, a, b).

The moment Bautin index has been studied in various special cases, motivated primarily by 
its relation to perturbations of the Abel equation (see Section 1.2 for an overview). Bounds have 
been obtained in various special cases, including the cases dP = 2, 3. We refer the reader to 
[1,2] and references therein for details. However, to our knowledge no general bound has been 
established. Our main result is the following general bound for the moment Bautin index.

Theorem 1. For any dP , dQ ∈ N we have

N(dP , dQ,a, b) � dQ + 3(dP − 1)2. (3)

3 For standard reasons, the moments (1), (2) do not depend on the choice of the integration path from a to b.
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Similarly, for any dP , dq we have

Ñ(dP , dq, a, b) � 2 + dq + 3(dP − 1)2. (4)

In particular, we draw the attention of the reader to the fact that the moment sequences depend 
linearly on the polynomials Q or q , and accordingly the estimate in Theorem 1 is linear in the 
degrees dQ, dq , making it fairly realistic. The estimate depends quadratically on dP , which also 
appears to be relatively realistic provided the moment sequences’ nonlinear dependence on P .

Following [1], this estimate immediately implies an analogous upper bound for the number of 
periodic solutions bifurcating from the zero solution for a large class of Abel equations. A precise 
statement of this type is given in our second main result, Corollary 4.

1.2. Perturbations of the Abel equation

The classical Hilbert’s 16th problem asks for bounding the number of limit cycles, i.e. isolated 
closed trajectories, of the polynomial vector field

dx

dt
= −y + F(x, y),

dy

dt
= x + G(x,y). (5)

The closely related Poincaré Center-Focus Problem asks for explicit conditions on the polyno-
mials F, G in order for the system (5) to have a center. These problems remain widely open, 
although during the years many partial results have been obtained (see [3] for an exposition).

An alternative context for the study of the problems above is provided by the Abel differential 
equation,

y′ = p(x)y2 + q(x)y3, x ∈ [a, b] ⊂R, (6)

where p, q can be polynomials, trigonometric polynomials or even analytic functions [4]. A pe-
riodic solution in this context corresponds to solution y(x) satisfying y(a) = y(b), and a center 
corresponds to an Abel equation where every solution with a sufficiently small initial condition 
is periodic. The Abel equation analogue of the Hilbert 16th problem, known as the Smale–Pugh 
problem, is to bound the number of periodic solutions of (6) in terms of the degrees of p and q . 
It is generally believed that some (but not all) of the essential difficulties in the study of (5) can 
be observed in (6), even when one restricts to the case of polynomial coefficients. On the other 
hand, the polynomial Abel equation allows for several important technical simplifications, and 
significant progress has been achieved for the Center-Focus problem in this context using tools 
from polynomial composition algebra and algebraic geometry [5,6].

The Smale–Pugh problem for the polynomial Abel equation remains open. Its infinitesimal 
version, first suggested in [2], is as follows:

Problem 1. How many periodic solutions can a small perturbation

y′ = p(x)y2 + εq(x)y3, x ∈ [a, b] (7)

of the “integrable” equation y′ = p(x)y2 have?
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This is an Abel equation analog of the “Infinitesimal Hilbert 16th problem” for which an 
explicit bound was obtained in [7]. Following [2], in this paper we focus our attention on the 
periodic solutions bifurcating from the zero solution of (7).

The unperturbed equation (ε = 0) is a center if and only if 
∫ b

a
p(x)dx = 0. Thus we may 

choose the primitive P such that P(a) = P(b) = 0. As in the classical case, the study of the 
bifurcation of periodic solutions as well as the center conditions for the perturbation (7) begins 
with the study of the first variation of the Poincaré map.

For technical reasons it is customary to consider the “reverse” map from time x = b to time 
x = a. Namely, let G(y) : (C, 0) → (C, 0) denote the germ of the analytic map assigning to each 
initial condition yb the value G(yb) = η(a), where η is a solution of (7) satisfying η(b) = yb . We 
may view G as a germ of an analytic function in the coefficients of the polynomials p, q and ε
as well. Fixed points of G correspond to periodic solutions, and the identical vanishing of G(y)

corresponds to a center. An explicit computation [2, Proposition 4.1] gives the expansion

d

dε

∣∣
ε=0G(y) = −y3

b∫
a

q(x)

1 − yP (x)
dx =

∞∑
k=0

m̃ky
k+3. (8)

As in the classical study of perturbation of Hamiltonian planar systems, it follows from this 
variational computation that the number of periodic solutions bifurcating from the zero solution 
of (7) is bounded by the order of zero of the right hand side, i.e. Ñ(P, q, a, b) + 3, assuming that 
this number is finite. On the other hand, if the first variation vanishes identically then one must 
in general consider higher order variations in ε, further complicating the study of bifurcating 
periodic solutions.

A surprising feature of the Abel equation (7) is that for many polynomials p, the vanishing of 
the first variation (8) automatically implies the identical vanishing of the Poincaré map. Toward 
this end we recall the following definition.

Definition 3. (See [1].) The polynomials P, Q are said to satisfy the composition condition 
(PCC) on [a, b] if there exists a polynomial W(x) with W(a) = W(b), and polynomials P̃ , Q̃
such that

P(x) = P̃ (W(x)), Q(x) = Q̃(W(x)).

A polynomial P is called “definite” (w.r.t. a, b), if for any polynomial Q, vanishing of all the 
moments m̃k(P, q) implies PCC for P, Q.

Definite polynomials are ubiquitous. In the deep works [8,6] all counter-examples have been 
classified and shown to admit a rigid algebraic structure.

Whenever the polynomials P, Q satisfy the PCC, the corresponding Abel equation (6) auto-
matically admits a center, as can be seen by a simple change of variable argument. We thus see 
that for a definite polynomial P , the vanishing of all moments m̃k(P, q) implies the identical
vanishing of the Poincaré map G(y). Therefore, in a sense the bifurcation of periodic solutions 
in (7) is fully controlled by the first variation (8). More formally, the following holds.
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Theorem 2. (See [1, Theorem 2.3].) Let P be a definite polynomial, and fix the parameters 
a, b, dq . Then there exist positive ε = ε(P, dq) and δ = δ(P, dq) such that for any ‖q‖ < ε with 
degq � dq , the number of periodic solutions of (6) with |y(a)| < δ is at most Ñ(dP , dq, a, b) +3.

As a corollary of Theorem 1 we therefore have the following first general estimate for the 
number of limit cycles near the zero solution for an Abel equation (6) with ‖q‖ small.

Corollary 4. Under the conditions of Theorem 2, the number of periodic solutions is bounded by 
5 + dq + 3d2

p .

1.3. Overview of the proof

It is shown in Section 2 (following [9]) that the second bound in Theorem 1 follows immedi-
ately from the first. Our approach to the proof of the first bound is based on the following two 
observations:

1. The vanishing index N(P, Q, a, b) is essentially equivalent to the order of the zero at t = ∞
of the moment generating function H(t) for the moment sequence {mk}. It turns out [9]
that H(t) admits an analytic expression as a Cauchy type integral for the algebraic function 
Q(P −1(z)).

2. The Cauchy type integral above satisfies a (non-homogeneous) linear differential equation 
of Fuchsian type [10].

The problem of estimating N(P, Q, a, b) is thus reduced to the study of the order of zero at 
t = ∞ of solutions of certain Fuchsian differential equations. A detailed analysis of the Fuchsian 
differential operator involved, and elementary considerations concerning its monodromy, allow 
us to give an a priori upper bound for this order of zero, thus proving Theorem 1.

Remark 5. We thank the anonymous referee for bringing to our attention the paper [11], which 
studies the maximal possible multiplicity of a zero of generic abelian integrals. While the par-
ticular arguments involved are different, the approach of this paper is also based on studying the 
maximal vanishing orders of solutions for certain linear ODEs.

1.4. Organization of the paper

In Section 2 we introduce moment generating functions for the two moment sequences 
{mk}, {m̃k} which turn out to be Cauchy-type integrals. In Section 3 we give a slightly gener-
alized version of the result of [10] which states that if a function g(z) satisfies a linear ODE 
Lg = 0 then the corresponding Cauchy-type integral I (t) satisfies a non-homogeneous linear 
ODE LI = R, where R is a rational function of known degree. Subsequently, in Section 4 we 
explicitly derive the corresponding non-homogeneous ODE for the moment generating functions. 
Finally in Section 5 we produce estimates for the order of zero the moment generating function 
at infinity using qualitative methods of linear ODEs.

2. Polynomial moments and generating functions

Recall the notations of Section 1.1. We introduce moment generating functions with the cor-
responding integral expression for the sequences {mk}, {m̃k} as follows:
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H(t) =
∞∑

k=0

mkt
−(k+1) H(t) =

b∫
a

Q(z)p(z)

t − P(z)
dz, (9)

H̃ (t) =
∞∑

k=0

m̃kt
−(k+1) H̃ (t) =

b∫
a

q(z)

t − P(z)
dz. (10)

Clearly,

ord∞ H(t) = N(P,Q,a, b) + 1 ord∞ H̃ (t) = Ñ(P, q, a, b) + 1. (11)

In particular, we have the following.

Proposition 6. We have

N(dP , dQ,a, b) = sup
H(t) �≡0

ordt=∞ H(t), (12)

where the supremum is taken over all pairs P, Q with respective degrees bounded by dP , dQ and 
H(t) denotes the corresponding moment generating function.

It turns out that H(t) and H̃ (t) are related by a simple formula, which implies in particular 
that the study of their orders of vanishing at t = ∞ are essentially the same [9, Claim, p. 40]. 
We repeat the argument of [9] in order to obtain an explicit description of relation between these 
orders.

Lemma 7. The condition m̃0 = 0 is equivalent to Q(a) = Q(b). Moreover, under this condition 
we have m̃k+1 = −(k + 1)mk for k ∈ N. In particular, we have

Ñ(P, q, a, b) � N(P,Q,a, b) + 1. (13)

Proof. Derivating under the integral sign we have

dH(t)

dt
= −

b∫
a

Q(z)p(z)

(t − P(z))2
dz = −

b∫
a

Qd

(
1

t − P(z)

)

= −[ Q(z)

t − P(z)

]b
a
+

b∫
a

q(z)

t − P(z)
dz = Q(a)

t − P(a)
− Q(b)

t − P(b)
+ H̃ (t) (14)

Comparing the t−1 coefficient we see that m̃0 = 0 if and only if Q(a) = Q(b), and under this 
condition m̃k+1 = −(k + 1)mk as claimed. �

The moment generating function (9) has the form of a Cauchy integral. Indeed, choose the 
curve of integration γ ′ from a to b in (9) to be some smooth curve avoiding the critical values of 
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P(z) (except perhaps at the endpoints). Then setting γ = P(γ ′) and substituting w = P(z) in (9)
we obtain

H(t) =
∫
γ

Q(P −1(w))

t − w
dw (15)

where P −1(w) denotes the branch of P −1 lifting γ to γ ′.

3. Cauchy-type integrals and linear differential operators

Let L be a scalar differential operator,

L = cr(z)∂
r + · · · + c0(z), c0, . . . , cr ∈C[z]. (16)

Let γ ⊂C be a smooth curve, and assume that γ does not pass through the singular points of L, 
except perhaps at its endpoints. Finally let g be a solution of Lg = 0 defined on γ , and assume 
further that g is bounded on γ (including at the possibly singular endpoints). We denote by 
p+, p− the endpoints of γ .

Then we define the Cauchy-type integral

I (t) =
∫
γ

g(z)

z − t
dz (17)

It is classically known that I (t) is a holomorphic functions defined on C \ γ , and moreover 
that the boundary values I+ and I− of I (t) on γ from above and below respectively satisfy 
I+ − I− = g|γ . Moreover I (t) can be analytically continued along any path avoiding the end-
points of γ .

Kisunko [10] proved the following (under the extra mild assumption that g is holomorphic at 
the endpoints of γ ).

Proposition 8. We have LI (t) = R(t) where R(t) is a rational function having poles of order at 
most r at p+, p− and no other poles on C.

Sketch of proof. By the classical properties of I (t) mentioned above, LI (t) is a (possibly multi-
valued) analytic function on C \ {p+, p−} with ramifications p+, p−, and the difference between 
the two branches near the branch cut at γ is g. But since Lg = 0, the boundary values of LI+
and LI− agree, so LI is in fact a univalued holomorphic function defined on C \ {p+, p−}. We 
will show that it has poles of order at most r at p+, p− and at most a pole at ∞.

Since g|γ is bounded, we may derive under the integral sign and write

LI (t) =
r∑

k=0

(−1)k

k! ck(t)

∫
γ

g(z)

(z − t)k+1
dz (18)

We now show that LI (t) admits polynomial growth of order at most r at p+ (and the same argu-
ments work for p−). It is enough to consider each of the integrals in (18) separately. Moreover, 
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we may assume that γ is a small piece of a smooth curve near p+ (because the integral over the 
rest of γ is analytic at p+). Choose a coordinate system where p+ = 0.

Let M denote an upper bound for |g(z)| on γ . Let t be a point in a punctured neighborhood 
of p+. Since g(z) admits analytic continuation along any curve in the punctured neighborhood, 
may deform γ without changing LI (t) so that for some positive constants C, D independent 
of t :

1. For every z ∈ γ , we have |z − t | � C|t | and also |z − t | > C|z|.
2. On γ we have |dz| � Dd|z|.
3. Write g = γ1 + γ2 where γ1 is the part of γ which lies in {z : |z| < 2t} and γ2 is the rest. 

Then the length of γ1 is at most D|t |, and the length of γ2 is at most D.

We now estimate

∣∣ ∫
γ

g(z)

(z − t)k+1
dz

∣∣ �
∫
γ1

M(C|t |)−k−1 |dz| +
∫
γ2

MD

(C|z|)k+1
d|z|

� length(γ1)M(C|t |)−k−1 +
[
−MDCk+1

k
|z|−k

]···

2|t |
� O(|t |−k) (19)

proving the claim.
Finally, it is easy to see that I (t) and its derivatives have a zero at t = ∞, and since the 

coefficients of L are polynomial it follows that I (t) has at most a pole at ∞ as well. �
4. A differential operator for Q(P −1)

Let V denote the linear space spanned by the dP branches of the algebraic function g(z) :=
Q(P −1(z)). We denote r := dimV , and note that r may be strictly smaller than dP . Denote by 
p1, . . . , ps the critical values of P .

4.1. The operator L

By a theorem of Riemann [3, Theorem 19.7], there exists a linear r-th order differential oper-
ator L, with polynomial coefficients,

L = cr(z)∂
r + · · · + c0(z), c0, . . . , cr ∈ C[z] (20)

whose solution space coincides with V . Moreover, L is uniquely determined by the requirement 
that cr , . . . , c0 do not share a non-trivial common factor. We recall the construction of L.

Recall that the Wronskian W(f1, . . . , fn) of a tuple of functions is defined to be

W(f1, . . . , fn) := det

⎛
⎜⎜⎝

f1 · · · fn

∂f1 · · · ∂fn

...
n−1 n−1

⎞
⎟⎟⎠ (21)
∂ f1 · · · ∂ fn
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Now let g1, . . . , gr denote r branches of g(z) which span V . Then clearly for any f ∈ V we have 
W(g1, . . . , gr , f ) = 0. We define the operator L̃ given by

L̃(f ) = W(g1, . . . , gr , f )

Wr

= [
∂r +

r−1∑
k=0

c̃k(z)∂
k
]
f where c̃k = Wk(g1, . . . , gr )

Wr(g1, . . . , gr)
(22)

where Wi are the minors obtained when expanding the Wronskian W(g1, . . . , gr , f ) along the 
last column. If the monodromy of g along a closed curve γ induces the linear automorphism 
Mγ : V → V then the corresponding monodromy along γ of each Wk is given by multiplication 
by detMγ . In particular, the coefficients ̃ck are univalued functions.

4.2. The divisors [Wk]

Let k = 0, . . . , r and z0 ∈ CP . Choose any local representative of the functions g1, . . . , gr . 
Since these functions have at most a finite ramification and moderate growth at z0, we may 
expand

Wk =
∞∑

j=−N

ak,j (z − z0)
j/q (23)

where q and N are some natural numbers. Suppose that ak,j0 is the first non-zero coefficient 
among the ak,j . Then we say that the fractional order of Wk at z0 is ordz0 Wk := j0/q . This 
notion is well-defined: indeed, the monodromy of Wk along any curve is given by multiplication 
by a non-zero constant and hence does not change the order. We define the fractional divisor 
[Wk] of W to be

[Wk] :=
∑

z∈CP

ordz Wk(z)[z]. (24)

This sum is locally-finite, and hence finite. Moreover it is clear that [̃ck] = [Wk] − [Wr ]. In 
particular, ̃ck admits finitely many singularities of finite order. Since we have already seen that 
c̃k is univalued, it is in fact a rational function.

We can also write the divisor [Wk] in terms of residues. Indeed, since the monodromy of Wk

along any curve is given by multiplication by a constant, the one-form d LogWk is a univalued 
one-form. It is easy to verify in local coordinates that it in fact has only finitely many poles, all 
of first order, and

[Wk] =
∑

z∈CP

Res
z

(d LogWk)[z]. (25)

For any divisor D = ∑
ni[zi] we denote Dzi

= ni and

degD =
∑

ni, D+ =
∑
ni�0

ni[zi], D− = −
∑
ni�0

ni[zi]. (26)

In particular, it follows from the above that deg[Wk] = 0.
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4.3. An estimate for deg[Wr ]+

Our next goal is to estimate deg[Wr ]+. Since [Wr ] is principal, it will suffice to estimate 
deg[Wr ]−. Recall that Wr = W(g1, . . . , gr) where gk = Q(P −1

k (z)) and P −1
1 (z), . . . , P −1

r (z)

denote r different branches of P −1(z). If z ∈ C is not a critical value of P then these functions 
are all holomorphic around z, and hence [Wr]z is non-negative.

Let the critical value pi have exactly mi < dP preimages, and write bi := dP − mi for the 
number of critical points (counted with multiplicities) over pi . Then at most 2bi of the branches 
gk may be ramified at pi . We expand the determinant defining Wr and note that:

• since gk is bounded, its order is non-negative;
• differentiation can decrease the order by at most 1;
• differentiation cannot decrease the order below zero for holomorphic gk.

We thus conclude that

ordpi
Wr > (−r + 1) + · · · + (−r + ν), where ν = min(r,2bi).

Since b1 + · · · + bs = dP − 1, it is not hard to see that the maximal value for the following sum 
is obtained when bi = 1 for i = 1, . . . , s, and in any case

s∑
i=1

ordpi
Wr > −(2dP − 3)(dP − 1). (27)

It remains to estimate the order of Wr at ∞. Choose a coordinate w around ∞ such that 
P(w) = w−dP . Then any branch of Q(P −1(w)) has the Puiseux expansion

Q(P −1(w)) = Q(w−1/dP ) = αw−dQ/dP + · · · , α �= 0 (28)

where · · · denote higher order terms. Moreover, the derivative ∂z = −w2∂w increases the order 
of zero at w = 0 by at least one. Expanding the determinant defining Wr we see that

ord∞ Wr � − rdQ

dP

+ r(r − 1)

2
. (29)

In conclusion, we have

deg[Wr ]+ = deg[Wr ]− � dQr

dP

+ (2dP − 3)(dP − 1) − r(r − 1)

2
. (30)

4.4. An estimate for degcr

We wish to derive an estimate for the number of singularities of L, or more specifically 
for deg cr . By definition, cr is a polynomial and [cr ]+ is the least common upper bound for 
[̃c0]−, . . . , [̃cr−1]− in (22). Recall that [̃ck] = [Wk] − [Wr ].

We first note that L is a Fuchsian operator. Indeed, since the solutions of L, being alge-
braic functions, have moderate growth at each singularity, this follows from a theorem of Fuchs 
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[3, Theorem 19.20]. Thus by definition the order of [cr] at any point p ∈C cannot exceed r . We 
will apply this to the points p1, . . . , ps .

Let now z ∈ C and z /∈ {p1, . . . , ps}. Then the branches g1, . . . , gr are holomorphic at z, so z
is not a point of [W0]−, . . . , [Wr−1]−. In other words, z can only be a point of [̃c0]−, . . . , [̃cr−1]−
if it comes from [Wr ]+. Thus we see that

[cr ]+ �
s∑

i=1

r[pi] + [Wr ]+. (31)

Using (30) and noting that s � dP − 1 and r � dP , we have the following proposition.

Proposition 9. The following estimate holds,

deg cr = deg[cr ]+ � dQr

dP

+ 3(dP − 1)2 − r(r − 1)

2
. (32)

5. Estimate for the order of H(t) at infinity

Recall from Section 2 that H(t) denotes the moment generating function (9), which can be 
represented (around t = ∞) as a Cauchy-type integral (15) of the algebraic function g(z) =
Q(P −1(z)). Recall from Section 4 that V denotes the linear span of the branches of g(z) with 
r := dimV and L the differential operator (20) satisfying V = kerL.

Proposition 10. If H(t) �≡ 0 then LH(t) �≡ 0.

Proof. Assume that LH(t) ≡ 0. Then H(t) ∈ V . Moreover, H(t) is holomorphic at t = ∞, and 
in particular it is invariant under the monodromy around infinity M∞ and hence also under the 
operator

T∞ : V → V, T∞ := 1

dP

dP −1∑
k=0

Mk∞. (33)

Recall that g(z) = Q(P −1(z)) and P −1(z) has cyclic monodromy at ∞. It follows that the image 
of T∞ is one-dimensional and spanned by

ImT∞ =C{S}, S(t) :=
∑

w:P(w)=t

Q(w). (34)

Moreover, S(t) is a polynomial: for instance, it is has no poles on C and moderate growth at 
∞. We conclude that H(t) is a polynomial. Finally, H(t) has a zero at t = ∞ by definition, and 
since it is also a polynomial it follows that H(t) ≡ 0, contradicting the hypothesis. �

Let D = t∂t denote the Euler operator, and recall that it also gives the Euler operator at t = ∞
(up to a sign). The following proposition describes the behavior of L around infinity.
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Proposition 11. We may write

L(t) = u(t)L̂ L̂ := Dr + ĉr−1D
r−1 + · · · + ĉ0, (35)

where ̂cr−1, . . . , ̂c0 are rational functions, holomorphic at t = ∞, and u(t) is a rational function 
satisfying

ord∞ u � −
[
dQr

dP

+ 3(dP − 1)2 − r(r + 1)

2

]
. (36)

Proof. The existence of an expression (35) is a direct consequence of the fact that L is a Fuchsian 
operator at t = ∞ (see [3, Proposition 19.18]). Using Proposition 9 we have

ord∞ u = r − deg cr � −
[
dQr

dP

+ 3(dP − 1)2 − r(r + 1)

2

]
, (37)

as claimed. �
Finally we have the following estimate.

Lemma 12. If H(t) �≡ 0 then

ord∞ H(t) � dQr

dP

+ 3(dP − 1)2 − r(r − 3)

2
. (38)

Proof. Using Proposition 8 we have LH(t) = R(t), where R(t) has at most two poles of order 
r in C. Moreover, by Proposition 10 R(t) is non-zero. It follows that ord∞ R(t) � 2r . Using 
Proposition 11 we have

ord∞(L̂H(t)) = ord∞ R(t) − ord∞ u(t)

� 2r + dQr

dP

+ 3(dP − 1)2 − r(r + 1)

2

� dQr

dP

+ 3(dP − 1)2 − r(r − 3)

2
.

It remains only to note that the application of L̂ cannot decrease the order of zero, and the claim 
follows. �

Finally we complete the proof of our main result.

Proof of Theorem 1. If H(t) �≡ 0 then by Lemma 12

ord∞ H(t) � dQ + 3(dP − 1)2, (39)

and the claim for N(dP , dQ, a, b) follows by Proposition 6. The claim for Ñ(dP , dq, a, b) then 
follows from Lemma 7, noting that dQ = dq + 1. �
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