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We consider the problem of recovering a linear combination of Dirac delta functions 
and derivatives from a finite number of Fourier samples corrupted by noise. This is 
a generalized version of the well-known spike recovery problem, which is receiving 
much attention recently. We analyze the numerical conditioning of this problem in 
two different settings depending on the order of magnitude of the quantity Nη, 
where N is the number of Fourier samples and η is the minimal distance between 
the generalized spikes. In the “well-conditioned” regime Nη ≫ 1, we provide upper 
bounds for first-order perturbation of the solution to the corresponding least-squares 
problem. In the near-colliding, or “super-resolution” regime Nη → 0 with a single 
cluster, we propose a natural regularization scheme based on decimating the samples 
– essentially increasing the separation η – and demonstrate the effectiveness and 
near-optimality of this scheme in practice.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In this work we consider the problem of reconstructing the locations ξj ∈ [−π,π] and amplitudes cℓ,j ∈ R
of a “generalized spike train”

f(x) =
K∑

j=1

ℓj−1∑

ℓ=0
cℓ,jδ

(ℓ)(x− ξj), (1)

where δ (x) is the Dirac delta distribution and δ(ℓ) is its derivative of order ℓ, from a finite number of the 
Fourier samples

f̂ (k) = 1
2π

π∫

−π

f (t) e−ıktdt, k = 0, 1, . . . , N − 1.
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This problem will perhaps be more familiar to the reader in the setting where ℓj = 1, j = 1, . . . , K, 
where it becomes the so-called “spike recovery problem”, receiving much attention recently [4,17,18,23,21,
24,29,40,41,43]. In this case we have f (x) =

∑K
j=1 cjδ (x− ξj), and denoting aj := cj

2π and zj := e−ıξjk, the 
problem essentially reduces to solving the system of equations

mk =
K∑

j=1
ajz

k
j , aj , zj ∈ C, k = 0, 1, . . . , N − 1. (2)

This algebraic system appeared originally in the work of G.R. de Prony [49] in the context of fitting a sum 
of exponentials to observed data samples, and hence it is also known as the Prony system. The equations (2)
appear in areas such as frequency estimation, Padé approximation, array processing, statistics, interpolation, 
quadrature, radar signal detection, error correction codes, and many more [3].

The higher-order model (1) is considered in many applications, e.g. [8,24,33,34,46,53,59]. In this case, 
instead of (2) we have the following polynomial Prony system (as well as its “confluent” variant, see [10])

mk =
K∑

j=1
zkj

ℓj−1∑

ℓ=0
aℓ,jk

ℓ, aℓ,j ∈ C, |zj | = 1, (3)

where aℓ,j = cℓ,j(−ı)ℓ
2π . The unknowns {zj} (or the corresponding angles ξj = ± arg zj) are frequently called 

“poles”, “nodes” or “jumps”, while the linear coefficients {aℓ,j} are called “magnitudes”.
Issues of numerical stability, or conditioning, of solving (2) and (3) when the left-hand side is perturbed 

have been recognized for a long time. Starting with the original Prony’s method, variety of more stable 
algorithms have been proposed such as MUSIC/ESPRIT [50], matrix pencils [26,33], as well as several 
least-squares based methods [44,45,47] and total variation minimization via convex programming [4,17,18,
29,43]. While the majority of these algorithms perform well on simple (i.e. with ℓj = 1) and well-separated 
nodes, they are poorly adapted to handle either multiple/clustered nodes, non-Gaussian noise or large values 
of N ([15,44]). An important open problem is stable super-resolution, or in other words the possibility to 
recover closely spaced spikes from noisy measurements, both in (2) and all the more in (3). Thus in this 
paper we regard “super-resolution” as the regime when the separation is much smaller than 1

N [50,57].

1.1. Summary of contributions

In this paper we are mainly interested in the numerical analysis of the generalized spike recovery problem, 
and more specifically in understanding the scalings pertaining to the noise amplification. Our first contri-
bution is providing explicit component-wise numerical condition bounds for the recovery of all the unknown 
model parameters for the system (3), up to first order, in the overdetermined setting (i.e. N larger than the 
number of unknowns). Theoretical analysis of the perturbation for the least-squares solution (Section 2) as 
well as numerical calculations (Section 5) of the condition numbers indicate that there is a “phase transi-
tion” between ill-conditioned and well-conditioned regimes, approximately when the node separation is of 
the order of 1

N . Our results describe, in particular, an absolute resolution limit for any method whatsoever. 
They build upon and significantly extend our earlier work [10].

Our second contribution is proposing a regularization mechanism for the (mildly) overdetermined Prony 
problem (3) with closely spaced nodes by “decimation”, i.e. taking subsets of the equations with indices 
belonging to arithmetic progressions, and subsequently solving the resulting square systems (Section 3). 
We show that solution of a decimated system is as accurate as the (least-squares) solution to the full 
overdetermined problem (Section 5). Thus, decimation provides a mechanism for achieving near-optimal 
super-resolution, at least in the case of a single cluster.
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In Section 6, Theorem 6.1 we specialize the above results to the system (2), and subsequently discuss 
their relation to existing works in the literature, in particular [6,16–18,23,30,40–43,47,48,54].

2. Accuracy of the least-squares solution

2.1. Problem setup

For a vector v ∈ Cm, we denote by vk (k = 1, . . . , m) the k-th component of v, and we also set |v|k := |vk|. 
For a matrix M ∈ Cm×n, we denote its i, j-th entry by Mi,j .

In what follows, we assume that the problem structure vector ℓ = (ℓ1, . . . , ℓK) is fixed. We denote by 
R = R (ℓ) :=

∑K
i=1 ℓi + K the overall number of unknown parameters of the problem.

For any N ! R, we consider the “forward mapping” PN : CR → CN given by the measurements (3), i.e.:

PN

(
(a0,1, . . . , aℓ1−1,1, z1, . . . , a0,K, . . . , aℓK−1,K, zK)T

)
:= (m0, . . . ,mN−1)T ,

mk :=
K∑

j=1
zkj

ℓj−1∑

ℓ=0
aℓ,jk

ℓ.
(4)

Thus, we enumerate the R parameters in the order shown – so that a0,1 is assigned the position 1, z1 is 
assigned the position ℓ1 + 1, and so on. For convenience, we define

Lj := 1 +
j−1∑

m=1
(ℓm + 1) ,

so that the index corresponding to aℓ,j (resp. zj) would be Lj + ℓ (resp. Lj + ℓj).
Let x ∈ CR denote a “data point” in the parameter space:

x := (a0,1, . . . , aℓ1−1,1, z1, . . . , a0,K, . . . , aℓK−1,K, zK)T ,

so that PN (x) stands for the noise-free measurement vector. The perturbed data vector is y := [P]v (x)+e.
Let JN (x) := dPv (x) ∈ CN×R denote the Jacobian matrix of the mapping PN at the point x, and let 

J †
N denote the Moore–Penrose pseudo-inverse of JN .
Now consider the solution to the linearized least-squares problem

x∗ = x∗ (x, e) := arg min
z∈CR

∥y − Lx (z)∥ , (5)

where Lx (z) = PN (x) + JN (x) (z − x) is a point in (dPN )x, the tangent space of PN at x. For small 
∥e∥, the vector x∗ in (5) is a reasonable proxy for the solution of the nonlinear least squares problem 
x∗

nl := arg minz∈CR ∥y − PN (z)∥, and our main goal in this paper is to investigate the error x∗ − x. Note 
that by (5) we have

x∗ = arg min
z∈CR

∥e − JN (x) (z − x) ∥,

and putting t := z − x this becomes

x∗ − x = arg min
t∈CR

∥e − JN (x) t∥ = J †
N (x) e. (6)

In order to estimate x∗ − x, we define the following component-wise measure of numerical conditioning 
for our problem.
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Definition 2.1. Assume that JN (x) has full rank. For α = 1, 2, . . . , R, the componentwise condition number
of parameter α at the data point x ∈ CR is the quantity

κα,N (x) :=
N∑

i=1

∣∣∣J †
N (x)α,i

∣∣∣ |PN (x)i|︸ ︷︷ ︸
=|mi−1|

. (7)

With this definition, suppose that the measurements have relative error at most ε, i.e. that the components 
of the error vector e ∈ CN satisfy

|ek|
|mk|

< ε, k = 0, 1, . . . , N − 1. (8)

Then by combining (6), (7) and (8), the error of the solution to the linearized least squares problem (5) can 
be bounded componentwise by

|x∗ − x|α " κα,N (x) ε. (9)

In other words, the quantity κα,N is a measure of noise amplification for the parameter α.
The reason for our choice of the noise model (8) is that the magnitude of the noise-free data (3) is growing 

with the index like mk ∼ kmaxj ℓj−1, and so it might be less reasonable to expect the same absolute error 
in m1 and, say, m100 if maxj ℓj > 1. Other formulations are possible, for instance the absolute error bound 
∥ek∥ " ε, and in fact our results can easily be modified to this scenario.2 However, for reasons of brevity, 
in the remainder of the paper we shall restrict ourselves to the assumption (8).

A central role is played by the node separation, defined as follows.

Definition 2.2. Let x ∈ CR be a data point such that |zj | = 1 for j = 1, . . . , K. For each j, let

η(j) := min
r ̸=j

|arg zj − arg zr|

with the convention that η(j) " π. Furthermore, we denote

η = η (x) := min
j

η(j).

Sometimes it will be more convenient to use the absolute distance instead of the angular distance, i.e.

ζ(j) := min
r ̸=j

|ξr − ξs| , ζ := min
j

ζ(j) (10)

but clearly

2
π

" ζ(j)

η(j) ,
ζ

η
" 1. (11)

In what follows, all the constants will in general depend on the problem structure vector ℓ. Also for 
consistency we put a−1,j := 0.

Finally, we assume an a priori uniform bound on the magnitudes of the linear coefficients:

|aℓ,j | " A.

2 If instead of the relative noise model (8) we assume that ∥ek∥ ! ε, we can redefine κα,N to be just the ℓ1 norm of row α of the 
matrix J †

N . The relation (9) would still hold, and the bounds for κα,N in Theorem 2.1 would be reduced by the factor Nmaxj ℓj−1. 
As a result all the parameters of the model (3) can be stably recovered.
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2.2. Main result

It has long been known that the overdetermined Prony system (2) is numerically stable when the number 
of equations N is greater than η−1 (and of course also N ! R). Here we present a certain quantitative 
version of this general principle for the system (3), using our definition of condition number as above. For 
proof see Subsection 4.3.

Theorem 2.1. Let x ∈ CR be a data point such that η = η (x) > 0 and aℓj−1,j ̸= 0 for j = 1, . . . , K. Then 
the Jacobian matrix JN (x) has full rank. Furthermore, there exist constants K, C(1) and C(2), depending 
neither on N nor η, such that for N > K · η−1:

κLj+ℓ,N (x) " C(1)A

(
1 + |aℓ−1,j |∣∣aℓj−1,j

∣∣

)
· 1
N ℓ+1−maxj ℓj

, ℓ = 0, . . . , ℓj − 1,

κLj+ℓj ,N (x) " C(2)A
1∣∣aℓj−1,j

∣∣ .
1

N ℓj+1−maxj ℓj
.

Note that if the multiplicities of the nodes are different, Theorem 2.1 shows stability only for the highest-
order node. For that node, increasing the number of measurements N improves the accuracy with rate 1

N . 
Furthermore, only the highest-order linear coefficient aℓj−1,j is provably stable, and increasing the number 
of measurements N does not improve the accuracy for this coefficient beyond a certain bound. Further note 
that the (asymptotic) condition numbers themselves do not depend on the node separation, but only the 
starting position from which the convergence obeys the stated estimates (the “well-conditioned” regime).

In the setting where Nη ∼ O (1), obtaining comparable estimates for κα,N appears to be much more 
involved. In the remainder of this paper we treat two special cases: the square setting N = R (Subsection 2.3), 
and a single cluster case (Section 3).

2.3. Square case

For square systems, Definition 2.1 reduces to the one used in [10], and in fact it coincides with the 
definition of sensitivity of solutions to well-posed algebraic problems given in [56]. The following estimate of 
the conditioning of the system (3) in the special case N = R is a refinement of the main result in [10]. The 
proof is presented in Subsection 4.1. The main novelty compared to [10] is the explicit dependence on η(j).

Theorem 2.2. Assume that N = R. Let x ∈ CR be a data point (see Definition 2.1) such that η = η (x) > 0
and aℓj−1,j ̸= 0 for j = 1, . . . , K. Then the Jacobian matrix JR (x) is invertible. Furthermore, there exist 
constants C(3), C(4), not depending on η, such that:

κLj+ℓ,R (x) " C(3)A

( 1
η(j)

)R−ℓ
(

1 + |aℓ−1,j |∣∣aℓj−1,j
∣∣

)
, ℓ = 0, . . . , ℓj − 1,

κLj+ℓj ,R (x) " C(4)A

( 1
η(j)

)R−ℓj

· 1∣∣aℓj−1,j
∣∣ .

3. Decimation

In contrast with Theorem 2.1, now we shift our attention to the “super-resolution” regime Nη ≪ 1. In 
this section we develop a regularization scheme for the special case of a single cluster of nodes, based on the 
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idea of decimation. We introduce the decimated Prony system, depending on a positive integer decimation 
parameter p, as follows:

nk := mpk =
K∑

j=1
zpkj

ℓj−1∑

ℓ=0

(
aℓ,jp

ℓ
)
kℓ, k = 0, 1, . . . , R− 1. (12)

The idea is that instead of solving (3) given {m0, . . . ,mN−1} – a difficult numerical problem – one would 
choose 1 " p "

⌊
N
R

⌋
and solve the square system (12) instead. The main reason why this should work is 

the following: if we have a cluster of closely spaced nodes {zj} with minimal separation η ≪ π, then the 
modified nodes {zpj } have minimal separation ηp, and therefore by Theorem 2.2 these modified nodes can be 
recovered with improved accuracy by solving (12). Essentially speaking, decimation with parameter p can 
be thought of as “zooming into” the cluster by a factor of p. In what follows we provide rigorous justification 
for this intuition. As it also turns out (see Section 5), the resulting accuracy is near-optimal, in the sense 
that it is of the same order as the “best possible accuracy” given by the non-decimated condition number 
κα,N in the “super-resolution” regime Nη ≪ 1. Thus, at least numerically, solving the decimated system 
provides solution as accurate as one would get if she solved the full overdetermined problem by least squares.

Analogously to Section 2, we define the decimated forward map P(p) : CR → CR as

P(p) (x) := (n0, . . . , nR−1) ,

where x ∈ CR is as in Definition 2.1 and nk are given by (12). The decimated condition numbers κ(p)
α are 

defined as

κ(p)
α (x) :=

R∑

i=1

∣∣∣∣∣

({
J (p) (x)

}−1)

α,i

∣∣∣∣∣ |ni−1| ,

where J (p) (x) is the Jacobian of the decimated map P(p) (the definition applies at every point x where the 
Jacobian is non-degenerate). In complete analogy to the non-decimated setting, we set

η(j)
p : = min

r ̸=j

∣∣arg zpr − arg zpj
∣∣ ,

ηp := min
j

η(j)
p .

The following result is proved in Subsection 4.2.

Theorem 3.1. Let x ∈ CR be a data point (see Definition 2.1), and let p ! 1 be such that ηp > 0 and 
aℓj−1,j ̸= 0 for j = 1, . . . , K. Then the Jacobian matrix J (p) (x) is invertible. Furthermore, there exist 
constants C(5), C(6), not depending on η and p, such that:

κ(p)
Lj+ℓ (x) " C(5) ·

(
1

η(j)
p

)R−ℓ

·
(

1 + |aℓ−1,j |∣∣aℓj−1,j
∣∣ pℓj−ℓ

)
· 1
pℓ+1−maxj ℓj

,

κ(p)
Lj+ℓj

(x) " C(6) ·
(

1
η(j)
p

)R−ℓj

· 1∣∣aℓj−1,j
∣∣ ·

1
pℓj+1−maxj ℓj

.

Corollary 3.1. Let η∗ := maxr ̸=j |arg zj − arg zr|, and assume that Nη∗ < πR (i.e. all nodes form a cluster). 
Then the condition numbers of the decimated system (12) with parameter p∗ :=

⌊
N
R

⌋
satisfy
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κ(p∗)
Lj+ℓ (x) " C(7) ·

( 1
η(j)

)R−ℓ
(

1 + |aℓ−1,j |∣∣aℓj−1,j
∣∣

)
· 1
NR+1−maxj ℓj

,

κ(p∗)
Lj+ℓj

(x) " C(8) ·
( 1
η(j)

)R−ℓj 1∣∣aℓj−1,j
∣∣ ·

1
NR+1−maxj ℓj

.

Proof. Substitution of η(j)
p∗ = p∗η(j) (of course η(j)

p∗ < π) and p∗ :=
⌊
N
R

⌋
into Theorem 3.1 leads to the 

desired result. ✷

Comparing Corollary 3.1 with Theorem 2.2, we see an improvement of conditioning by a factor of 
1

NR+1−maxj ℓj
(disregarding the constants) gained by decimating – while staying with the same input size.

Comparing Corollary 3.1 with Theorem 2.1, it is seen that if η is fixed, then the decimated condition 
numbers (say for the nodes) in the region Nη∗ < πR decay as N−R+maxj ℓj−1, while in the region Nη >

K the rate of decay of the undecimated κ is only N−ℓj+maxj ℓj−1. This qualitative difference, or “phase 
transition”, is also evident from the numerical data in Section 5.

Let us now discuss how the decimated system can be solved in practice. Corollary 3.1 provides a simple 
recipe: given N measurements, just pick up the R evenly spaced ones having “maximal spread”. Since this 
is now a square system (effectively of constant size), it can be solved efficiently. In [7,9] we propose such a 
method based on polynomial homotopy continuation. In Section 5 of this paper we show that even standard 
methods such as nonlinear least squares and ESPRIT do not lose accuracy when provided with decimated 
measurements on one hand, and have reduced running time on the other hand.

An important caveat of the decimation approach is that it introduces aliasing for the nodes – indeed, 
the system (12) has wj = zpj as the solution instead of zj, and therefore after solving (12), the algorithm 

must select the correct value for the p-th root (w̃j)
1
p . Thus, either the algorithm should start with an 

approximation of the correct value (and thus decimation will be used as a fine-tuning technique), or it 
should choose one among the p possibilities – for instance, by calculating the discrepancy with the other 
measurements, which were not originally utilized in the decimated calculation. Another possibility would 
be to try different decimation parameters and employ some matching procedure, discarding the spurious 
roots above. In [9] we discuss these issues in more detail.

4. Proofs of main results

4.1. Proof of Theorem 2.2

Definition 4.1. Let {ℓj , zj}Kj=1 be given, and put F :=
∑K

j=1 ℓj . The Pascal–Vandermonde matrix is the 
F × F matrix

V = V (z1, ℓ1, . . . , zK, ℓK) :=

⎡

⎢⎢⎣

v0 (z1, ℓ1) v0 (z2, ℓ2) . . . v0 (zK, ℓK)
v1 (z1, ℓ1) v1 (z2, ℓ2) . . . v1 (zK, ℓK)

...
...

...
...

vF−1 (z1, ℓ1) vF−1 (z2, ℓ2) . . . vF−1 (zK, ℓK)

⎤

⎥⎥⎦ ,

where

vk (zj , ℓj) := zkj

[
1 k k2 . . . kℓj−1

]
.
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Definition 4.2. Under the above notations, the confluent Vandermonde matrix is the F × F matrix

U = U (z1, ℓ1, . . . , zK, ℓK) :=

⎡

⎢⎢⎣

u0 (z1, ℓ1) u0 (z2, ℓ2) . . . u0 (zK, ℓK)
u1 (z1, ℓ1) u1 (z2, ℓ2) . . . u1 (zK, ℓK)

...
...

...
...

uF−1 (z1, ℓ1) uF−1 (z2, ℓ2) . . . uF−1 (zK, ℓK)

⎤

⎥⎥⎦

where

uk (zj , ℓj) :=
[
zkj , kzk−1

j , . . . , (k)ℓj−1z
k−ℓj+1
j

]

and (k)ℓ is the Pochhammer symbol for the falling factorial

(k)ℓ := k(k − 1) · · · · · (k − ℓ + 1).

Definition 4.3. For every x ∈ C \ {0} and c ∈ N, let Tx,c denote the c × c matrix

Tx,c := diag
{
1, x, x2, . . . , xc−1} .

Clearly,

(Tx,c)−1 = Tx−1,c.

Definition 4.4. Let S(k)
n denote the Stirling number of the second kind [1, Section 24.1.4]:

S(k)
n := 1

k!

k∑

j=0
(−1)(k−j)

(
k

j

)
jn,

and let Sm denote the m ×m upper triangular matrix

Sm :=

⎡

⎢⎢⎢⎢⎣

S(0)
0 S(0)

1 S(0)
2 . . . S(0)

m−1
0 S(1)

1 S(1)
2 . . . S(1)

m−1
...

... . . . ...
0 0 0 S(m−1)

m−1

⎤

⎥⎥⎥⎥⎦
.

Proposition 4.1. The confluent Vandermonde and Pascal–Vandermonde matrices satisfy

V (z1, ℓ1, . . . , zK, ℓK) = U (z1, ℓ1, . . . , zK, ℓK) × diag
{
Tzj ,ℓjSℓj

}K
j=1 . (13)

Proof. The generating function of the Stirling numbers of the second kind is [1, Section 24.1.4]

ℓj−1∑

ℓ=0
S(ℓ)

ℓj−1(k)ℓ = kℓ.

The formula (13) then immediately follows from Definition 4.1 and Definition 4.2. ✷

The confluent Vandermonde matrix U is well-studied in numerical analysis due to its central role in 
polynomial interpolation. The following fact is well-known [10].
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Proposition 4.2. The matrix U (z1, ℓ1, . . . , zK, ℓK) is invertible if and only if the nodes {zj}Kj=1 are pairwise 
distinct.

Now we state the key estimate used to prove Theorem 2.2.

Theorem 4.1. Let {x1, . . . , xn} be pairwise distinct complex numbers with |xj | ≤ 1. For each j = 1, . . . , n
assume the separation condition |xi − xj | ≥ ζj > 0 for i ̸= j. Further, let {ℓ1, . . . , ℓn} be an ordered collection 
of natural numbers such that ℓ1 + ℓ2 + · · ·+ ℓn = N . Denote by uj,k the row with index ℓ1 + · · ·+ ℓj−1 +k+1
of [U (x1, ℓ1, . . . , xn, ℓn)]−1 (for k = 0, 1, . . . , ℓj − 1). Then the ℓ1-norm of uj,k satisfies

∥uj,k∥1 :=
N∑

s=1

∣∣(uj,k)s
∣∣ "

( 2
ζj

)N−ℓj 2k
k!

(
1 + 2N

ζj

)ℓj−1−k

. (14)

The proof of this theorem (see below) combines original Gautschi’s technique [32] and the well-known 
explicit expressions for the entries of U−1 from [52], plus a technical lemma (Lemma 4.1).

Definition 4.5. For j = 1, . . . , n let

hj(x) =
∏

i̸=j

(x− xi)−ℓi . (15)

Lemma 4.1. For any natural k, the k-th derivative of hj at xj satisfies
∣∣∣h(k)

j (xj)
∣∣∣ " N(N + 1) · · · (N + k − 1)ζ−N−k+ℓj

j .

Proof. We proceed by induction on k. For k = 0 we have immediately |hj (xj)| " ζ
−N+ℓj
j . Now

h′
j(x) = hj(x)

∑

i̸=j

−ℓi
x− xi

. (16)

By the Leibnitz rule we have

h(k)
j (x) =

(
h′
j

hj
hj

)(k−1)

=
k−1∑

r=0

(
k − 1
r

)
h(r)
j (x)

(
h′
j

hj

)(k−1−r)

=
k−1∑

r=0

(
k − 1
r

)
h(r)
j (x)

∑

i̸=j

(−1)k−r−1(k − r − 1)!ℓi
(x− xi)k−r

,

hence

∣∣∣h(k)
j (xj)

∣∣∣ "
k−1∑

r=0

(
k − 1
r

) ∣∣∣h(r)
j (xj)

∣∣∣
∑

i̸=j

(k − r − 1)!ℓi
|xj − xi|k−r

.

This implies, together with the induction hypothesis, that

∣∣∣h(k)
j (xj)

∣∣∣ "
k−1∑

r=0

(
k − 1
r

)
N (N + 1) · · · (N + r − 1)

ζ
N+r−ℓj
j

· (k − r − 1)!N
ζk−r
j
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= N

ζ
N+k−ℓj
j

k−1∑

r=0

(k − 1)!
r! N (N + 1) · · · (N + r − 1)

= (k − 1)!N
ζ
N+k−ℓj
j

k−1∑

r=0

(
N − 1 + r

r

)
.

By a well-known binomial identity (proof is immediate by induction and Pascal’s rule) we have

k−1∑

r=0

(
N − 1 + r

r

)
=

(
N + k − 1

k − 1

)
.

Therefore
∣∣∣h(k)

j (xj)
∣∣∣ " N (N + 1) · · · (N + k − 1)

ζ
N+k−ℓj
j

,

as required. ✷

Proof of Theorem 4.1. By using a generalization of the Hermite interpolation formula ([55]), it is shown in 
[52] that the components of the row uj,k are just the coefficients of the polynomial

1
k!

ℓj−1−k∑

t=0

1
t!h

(t)
j (xj)(x− xj)k+t

∏

i̸=j

(x− xi)ℓi ,

where hj (x) is given by (15). By [31, Lemma], the sum of absolute values of the coefficients of the polynomials 
(x − xj)k+t

∏
i̸=j(x − xi)ℓi is at most

(1 + |xj |)k+t
∏

i̸=j

(1 + |xi|)ℓi " 2N−(ℓj−k−t).

Therefore

∥uj,k∥1 " 1
k!

ℓj−1−k∑

t=0

1
t!
N(N + 1) · · · (N + t− 1)

ζ
N+t−ℓj
j

2N−ℓj+k+t

=
( 2
ζj

)N−ℓj 2k
k!

ℓj−1−k∑

t=0

(
ℓj − 1 − k

t

)
N(N + 1) · · · (N + t− 1)

(ℓj − k − t) · · · (ℓj − k − 2)(ℓj − k − 1)

( 2
ζj

)t

"
( 2
ζj

)N−ℓj 2k
k!

(
1 + 2N

ζj

)ℓj−1−k

,

which completes the proof (in the last transition we used N+r
s+r " Ns+rN

s+r = N , where s = ℓj − k− t ! 1 and 
r = 0, . . . , t − 1). ✷

Now we state a similar bound for the Pascal–Vandermonde matrix V .

Corollary 4.1. Assume that |zj | = 1, with mini̸=j |zi − zj | = ζj > 0 for j = 1, . . . , K. Denote by vj,k the row 
with index

ℓ1 + 1 + · · · + ℓj−1 + 1 + k + 1 (17)
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of {V (z1, ℓ1 + 1, . . . , zK, ℓK + 1)}−1 (for k = 0, 1, . . . , ℓj). Then there exists a constant C, not depending on 
ζ, such that

∥vj,k∥1 " C ·
( 1
ζj

)R−k

(18)

where R =
∑K

j=1 (ℓj + 1) = F + K.

Proof. Denote by uj,k the row with index (17) of

{U (z1, ℓ1 + 1, . . . , zK, ℓK + 1)}−1 .

Since 
(
Tzj ,ℓjSℓj

)−1 is block upper triangular with entries bounded by a constant,3 say, C∗, we have by 
Theorem 4.1 (obviously ζj < 2R)

∥vj,k∥1 " ℓj · C∗ · max
t=k,...,ℓj

∥uj,t∥1

" C∗ℓj

( 2
ζj

)R−ℓj

max
t=k,...,ℓj

2t
t!

(4R
ζj

)(ℓj+1)−1−t

" C ·
( 1
ζj

)R−k

,

which finishes the proof. ✷

Definition 4.6. For every j = 1, . . . , K let us denote by Ej the following (ℓj + 1) × (ℓj + 1) block

Ej = Ej (x) :=

⎡

⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 a0,j

zj
...

... . . . ...
0 0 0 aℓj−1,j

zj

⎤

⎥⎥⎥⎥⎦
. (19)

Subsequently, we denote by E the block diagonal R×R matrix

E = E (x) := diag {E1, . . . , EK} . (20)

Proposition 4.3. Direct calculation gives

3 As a matter of fact, we have the exact formula for the inverse [1, Section 24.1.4]

S−1
m =

⎡

⎢⎢⎢⎢⎢⎣

S(0)
0 S(0)

1 S(0)
2 . . . S(0)

m−1
0 S(1)

1 S(1)
2 . . . S(1)

m−1
...

...
. . .

...
0 0 0 S(m−1)

m−1

⎤

⎥⎥⎥⎥⎥⎦
,

where S(k)
n is the Stirling number of the first kind, equal to the (signed) number of permutations of n symbols having exactly k

cycles [1, Section 24.1.3].
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E−1
j =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0 . . . 0
0 1 0 . . . − a0,j

aℓj−1,j

0 0 1 . . . − a1,j
aℓj−1,j

...
0 0 0 . . . + zj

aℓj−1,j

⎤

⎥⎥⎥⎥⎥⎥⎦
, (21)

Proof of Theorem 2.2. For the Jacobian matrix of PR, we have the following factorization by a straightfor-
ward computation:

JR (x) = V (z1, ℓ1 + 1, . . . , zK, ℓK + 1) × E (x) . (22)

Therefore

J−1
R = diag

{
E−1

j

}
V −1.

Combining this with (21), (11) and Corollary 4.1, we complete the proof of Theorem 2.2. ✷

4.2. Proof of Theorem 3.1

From (12) it is clear that the map P(p) can be written as a composition: P(p) = PR ◦Rp, where PR is 
given by (4) and Rp is the rescaling mapping given by

Rp

(
(a0,1, . . . , aℓ1−1,1, z1, . . . , a0,K, . . . , aℓK−1,K, zK)T

)
:=

(b0,1, . . . , bℓ1−1,1, w1, . . . , b0,K, . . . , bℓK−1,K, wK)T =
(
a0,1 · p0, . . . , aℓ1−1,1 · pℓ1−1, zp1 , . . . , a0,K · p0, . . . , aℓK−1,K · pℓK−1, zpK

)T
.

By the chain rule, dP(p) = dPR × dRp. But dRp is just the diagonal matrix

dRp = diag
{

1, p, p2, . . . , pℓ1−1, pzp−1
1 , . . . , 1, p, p2, . . . , pℓK−1, pzp−1

K

}
.

By definition, minr ̸=j |argwr − argwj | = η(j)
p . Furthermore, we have the estimate |nk| " Apmaxj ℓj−1. Taking 

the inverse, and applying Corollary 4.1 and (22), it can be seen that the decimated condition numbers satisfy:

κ(p)
Lj+ℓ (x) " C(5)A

(
1

η(j)
p

)R−ℓ (
1 + |bℓ−1,j |∣∣bℓj−1,j

∣∣

)
· 1
pℓ+1−maxj ℓj

,

κ(p)
Lj+ℓj

(x) " C(6)

(
1

η(j)
p

)R−ℓj 1∣∣bℓj−1
∣∣ ·

1
p2−maxj ℓj

.

Now plug in |bℓ,j | = pℓ |aℓ,j | to finish the proof of Theorem 3.1.

4.3. Proof of Theorem 2.1

A key step in the proof of this result is an accurate description of pseudo-inverses of rectangular Pascal–
Vandermonde matrices, with the nodes on the unit circle.
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Definition 4.7. Let {ℓj , zj}Kj=1 be given. For any t = 0, 1, . . . , and j = 1, . . . , K, denote by w(t)
j,N the column 

vector (where 00 = 1)

w(t)
j,N =

⎛

⎜⎜⎜⎜⎜⎝

0t
zj

2tz2
j

...
(N − 1)t zN−1

j

⎞

⎟⎟⎟⎟⎟⎠
.

With this notation, we define the following N ×R matrix:

WN = WN (z1, ℓ1, . . . , zK, ℓK) :=
(
w(0)

1,N . . . w(ℓ1)
1,N . . . w(0)

K,N . . . w(ℓK)
K,N

)
.

We also put

W := W ∗
NWN ∈ CR×R.

Recalling Definition 4.1, note that WR = V (z1, ℓ1 + 1, . . . , zK, ℓK + 1). Thus we immediately obtain the 
following corollary of Proposition 4.2.

Proposition 4.4. Suppose that {zj} are pairwise distinct. Then, for N ! R, the matrix WN has full column 
rank, and thus W has full rank.

The next claim is easily verified by observation.

Proposition 4.5. The matrix W has an explicit block structure as follows:

W = [Brs]1!r,s!K ,

where Brs is a rectangular (ℓr + 1) × (ℓs + 1) block

Brs =
[
b(r,s)i,j

]

0!i!ℓr, 0!j!ℓs

and

b(r,s)i,j =
[
w(i)

r,N

]∗
w(j)

s,N =
N−1∑

ℓ=0
ℓi+j (z∗rzs)

ℓ . (23)

Definition 4.8. Given N, q integers, hN,q is the sum of q-th powers (generalized harmonic number)

hN,q :=
N−1∑

ℓ=0
ℓq.

For instance, hN,0 = N , hN,1 = 1 + · · ·+ (N − 1) = N(N−1)
2 . In general, by the Faulhaber’s formula [20], 

hN,q is a polynomial in N with leading term 1
q+1N

q+1.

Proposition 4.6. The entries b(r,s)i.j defined in (23) satisfy, as N > K1 for some constant K1 (depending only 
on i + j)
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∣∣∣b(r,s)i,j

∣∣∣ "
{

2
i+j+1N

i+j+1 r = s,

4η−1
rs N i+j r ̸= s,

where ηrs := |arg z∗rzs| (as in Definition 2.2).

Proof. Let urs = z∗rzs. It is a complex number on the unit circle. Consider two cases.

1. r = s and so urs = 1. In this case b(r,r)i,j is just the (i + j)-th generalized harmonic number

b(r,r)i,j = hN,i+j .

2. r ̸= s. Let q be a non-negative integer, put urs := z and consider

fN,q (z) :=
N−1∑

k=0
kqzk.

We evaluate the above expression using summation by parts. Define sequences Ak := kq and

Bk := 1 + z + · · · + zk−1.

That is, Bk+1 −Bk = zk with B0 := 0. Thus

fN,q (z) =
N−1∑

k=0
Ak (Bk+1 −Bk)

= ANBN −A0B0 −
N−1∑

k=0
Bk+1 (Ak+1 −Ak)

= NqBN −
N−1∑

k=0
[(k + 1)q − kq]Bk.

Now put z = exp (ıt) (without loss of generality for 0 < t < π). Then obviously for any non-negative 
integer k we have

|Bk|2 =
∣∣∣∣
zk+1 − 1
z − 1

∣∣∣∣
2

=
∣∣∣∣
sin (k + 1) t

2
sin t

2

∣∣∣∣
2

,

and thus |Bk| " 2
t . Therefore

|fN,q (z)| " 2
t

{
Nq +

N−1∑

k=0
[(k + 1)q − kq]

}
= 4

t
Nq.

This proves the claim. ✷

Now we move on to study W−1.

Proposition 4.7. The square matrix Brr is invertible, with (i, j)-th entry (i, j starting from 1) of the inverse 
satisfying for N > K2
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(
B−1

rr

)
i,j

" C1 ·
qi,j

N i+j−1 ,

where qi.j is the (i.j)-th entry of the inverse (ℓr + 1) × (ℓr + 1) Hilbert matrix, and C1, as well as K2, do 
not depend on N .

Proof. Use formula for component-wise perturbation of matrix inverse. Namely, write

Brr = Hℓr + ∆H

where Hℓr is the scaled (ℓr + 1) × (ℓr + 1) Hilbert matrix

Hℓr =
(

N i+j−1

i + j − 1

)

i,j

. (24)

Given any matrix A, let us denote by |A| the matrix of absolute values of entries of A. Now we have 
|∆H| " ϵ |Hℓr | for ϵ ∼ N−1. It is immediately checked that

H−1
ℓr

=
( qi,j
N i+j−1

)

i,j
(25)

where qi,j is the (i.j)-th entry of the inverse (ℓr + 1) × (ℓr + 1) Hilbert matrix.
Then (see [35, Section 3]) to first order in ϵ we have B−1

rr = H−1
ℓr

+ ∆B−1
rr where

∣∣∆B−1
rr

∣∣ ∼
∣∣H−1

ℓr

∣∣ |Hℓr |
∣∣H−1

ℓr

∣∣ ϵ.

Taking into account the order of magnitudes specified by (24) and (25) we easily obtain that the order of 
growth of 

(
B−1

rr

)
i,j

is

qi,j
N i+j−1 + O

(
N−i−j

)
.

Since the entries of Brr are polynomials in N (see Proposition 4.6), the entries of B−1
rr are rational functions 

in N , and thus we obtain the desired result. ✷

Now we come to the main structure result for W.

Definition 4.9. Given the structure vector ℓ = (ℓ1, . . . , ℓK), let Dℓ denote the following block diagonal 
matrix:

Dℓ = diag {B11, . . . , BKK} .

Recall that the matrix W consists of the rectangular blocks Brs. The following claim is straightforward.

Proposition 4.8. We have

W = Dℓ ×X,

where X ∈ CR×R has the block structure

X = [Crs]1!r,s!K ,
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each Crs being a (ℓr + 1) × (ℓs + 1) block

Crs = B−1
rr ×Brs.

So in particular Crr = I(ℓr+1)×(ℓr+1).

Now using Proposition 4.6 and Proposition 4.7 we easily obtain the following.

Proposition 4.9. For r ̸= s, the (i, j)-th entry of Crs (counting starts from 1) satisfies, for N > K2 and 
some constant C2

∣∣∣[Crs]i,j
∣∣∣ " C2 · η−1N−i+j−1.

Next we denote Y := IR×R −X. By induction on k, it is easy to prove the following fact.

Proposition 4.10. For each k = 1, 2, . . . , the matrix Y k has the block structure

Y k =
[
T (k)
rs

]

1!r,s!K
,

where T (k)
rs is a (ℓr + 1) × (ℓs + 1) block, whose (i.j)-th entry satisfies, for N > K2 and some constant C3

∣∣∣∣
[
T (k)
rs

]

i,j

∣∣∣∣ " C3 ·
Rk−1

ηk
N−i+j−k.

This immediately leads to the following conclusion.

Proposition 4.11. For N > K3 := max
(

R
η ,K2

)
the Neumann series 

∑∞
k=1 Y

k converges, and thus X = I−Y

is invertible, with

X−1 = I +
∞∑

k=1
Y k = I + Z,

where Z has the same block structure as X, i.e. Z = [Ξrs]1!r,s!K, with Ξrs being a (ℓr + 1)× (ℓs + 1) block, 
whose (i, j)-th entry satisfies, for some constant C4

∣∣∣[Ξrs]i,j
∣∣∣ " C4 ·

1
1 − R

Nη

·
{
N−i+j−1 r ̸= s,

N−i+j−2 r = s.

Now, since W = Dℓ (I − Y ), then

W−1 = X−1D−1
ℓ = (I + Z)D−1

ℓ

= D−1
ℓ + [Ξrs] diag

{
B−1

tt

}
.

Using all the above structural results, we obtain the following asymptotic description of the blocks of W−1.

Proposition 4.12. The matrix W−1 ∈ CR×R has the block form

W−1 = [Vrs]1!r,s!K ,



JID:YACHA AID:1165 /FLA [m3L; v1.190; Prn:14/10/2016; 11:36] P.17 (1-25)
D. Batenkov / Appl. Comput. Harmon. Anal. ••• (••••) •••–••• 17

where each Vrs is a (ℓr + 1) × (ℓs + 1) block, whose (i, j)-th entry satisfies, for some constant C5 and 
N > K3,

∣∣∣[Vrs]i,j
∣∣∣ " C5 ·

1
1 − R

Nη

·
{
N−i−j+1 r = s,

N−i−j r ̸= s.

So we actually have proved the following result.

Theorem 4.2. Consider the pseudo-inverse W †
N = W−1W ∗

N ∈ CR×N Pascal–Vandermonde matrix as a 
striped matrix, i.e. W †

N = [vℓ,j ]0!ℓ!ℓj
1!j!K , where each vℓ,j ∈ C1×N is a row vector. Then as N > K4 :=

max
(
K3,

2R
η

)
, the magnitudes of the entries of vℓ,j are bounded by C6 ·N−ℓ−1, where C6 depends only on 

the problem structure vector ℓ.

Proof of Theorem 2.1. For the Jacobian matrix JN (x) = dPN (x) ∈ CN×R, direct computation gives

JN (x) = WN ×E,

where E is defined in (20). Combining this with Proposition 4.4 proves that JN has full rank.
Furthermore,

J †
N =

(
J[N ]∗JN

)−1 J ∗
N = (E∗W ∗

NWNE)−1 E∗W ∗
N = E−1W−1 (E∗)−1 E∗W ∗

N

= E−1W−1W ∗
N = E−1W †

N .

Consider J †
N ∈ CR×N as a striped matrix, i.e. J †

N = [jℓ,j ]0!ℓ!ℓj
1!j!K where each jℓ,j ∈ C1×N is a row vector. 

Using (21) and Theorem 4.2, we obtain that for N > K4 and some constant C7

∣∣(jℓ,j)t
∣∣ " C7 ·

⎧
⎪⎪⎨

⎪⎪⎩

(
1 + |aℓ−1,j |∣∣∣aℓj−1,j

∣∣∣

)
· 1
Nℓ+1 0 " ℓ < ℓj ,

1∣∣∣aℓj−1,j
∣∣∣
· 1
Nℓj+1 ℓ = ℓj .

(26)

Let i = 0, 1, . . . , N − 1. Clearly, we have

|PN (x)|k = |mk−1| " C8A (k − 1)maxj ℓj−1 .

Thus in particular

N−1∑

k=0
|mk| " C9ANmaxj ℓj . (27)

Plugging (26) and (27) into (7), the second claim of Theorem 2.1 immediately follows. ✷

5. Numerical experiments

5.1. Condition numbers

In this section we present numerical study of the quantities κα,N and κ(p∗)
α , and their comparison with 

the respective upper bounds given by Theorem 2.1 and Corollary 3.1.
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5.1.1. Experimental setup
1. In all experiments, the nodes were chosen to be evenly spaced and of the same order (i.e. ℓr = ℓs = n

for all r, s). In all the experiments we put K = 3. The variable parameters were n and η.
2. We were interested primarily in asymptotics w.r.t. N and η. Thus, in order to minimize the influence of 

the magnitudes of the linear coefficients aℓ,j, we effectively computed the inner products of the rows of 
the corresponding (pseudo-) inverse Vandermonde matrices W †

N and V −1 with the measurement vector, 
see Subsection 4.1 and Subsection 4.3.

3. The following quantities were computed:
(a) Decimated and undecimated condition numbers.
(b) Theoretical bounds for the stable regime, according to Theorem 2.1 (accurate computation was 

done according to Proposition 4.7, and specifically (24) and (25)):

Bound1ℓ (N) := Nn
(
H−1

ℓr

)
ℓ+1,1 .

(c) Theoretical bounds for the super-resolution regime, according to Corollary 3.1 (see also Corol-
lary 4.1):

Bound2ℓ (N, η) := RR2(R+2(ℓj−ℓ)+1) · ℓj
ℓ! ηℓ−RNn−1−R.

4. All calculations were done using Mathematica with 30 digit precision.

5.1.2. Results
The graphs in Fig. 1 on page 19 present the computed values of κLj+ℓ,N (solid) and κ(p∗)

Lj+ℓ (thick solid), 
as well as the quantities Bound1ℓ (N) (dashed) and Bound2ℓ (N, η) (dotted). The different values of ℓ are 
distinguished by color-coding. In each experiment we fixed K, n and η, while varying N . The horizontal 
axis is scaled as Nη

R . The plots are semi-logarithmic in the vertical axis.

5.1.3. Conclusions
1. A “phase transition” between well-conditioned and ill-conditioned regions is seen to occur with the 

threshold in the range Nη
R ∈ (1, 3).

2. In the “near ill-conditioned” (or “super-resolution”) region, the decimated condition number are almost 
identical with the non-decimated ones.

3. The computed upper bounds provide accurate growth rates in the region Nη ≫ 1, and are also relatively 
accurate in the super-resolution region.

4. The periodic pattern for κ(p) is seen in the well-conditioned region and it is well-predicted by the theory. 
For instance, it is easy to see that for infinite number of values of p we have π < pη∗ < π + ε (recall 
Corollary 3.1), thus ηp becomes small and κ(p) blows up.

5.2. Least squares and ESPRIT with decimation

We have tested the decimation technique on two well-known algorithms for Prony systems – generalized 
ESPRIT [5] and nonlinear least squares (LS, implemented by MATLAB’s lsqnonlin). To avoid the aliasing 
problem, we assumed an initial approximation to be given. All computations were done in MATLAB with 
double precision floating point arithmetic. The computed values of mk were perturbed in a random manner 
with specified noise level.

In the first experiment, we fixed the number of measurements to be 66, and changed the decimation 
parameter p, while keeping the noise level constant. The accuracy of recovery increased with p – see Fig. 2
on page 20.
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Fig. 1. Estimating the condition numbers and their upper bounds. Upper row: decimated vs. non-decimated, super-resolution (upper 
left) and stable (upper right) regions. Lower row: undecimated condition numbers vs. upper bounds. CN stands for condition number 
(κ) and δ stands for η.

In the second experiment, we fixed the highest available measurement to be N = 1600, and changed 
the decimation from p = 1 to p = 100 (thereby reducing the number of measurements from 1600 to just 
16). The accuracy of recovery stayed relatively constant – see Fig. 3 on page 20. Such a reduction leads to 
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Fig. 2. Reconstruction error as a function of the decimation with fixed number of measurements (N = 66). The signal has two nodes 
with distance η = 10−2 between each other. Notice that ESPRIT requires significantly higher Signal-to-Noise Ratio in order to 
achieve the same performance as LS.

Fig. 3. Reconstruction error as a function of the decimation, reducing number of measurements from N = 1600 to N = 16. The 
signal has two nodes with distance η = 10−2 between each other. The reconstruction accuracy remains almost constant.

a corresponding decrease in the running time, since for instance the SVD computation in ESPRIT takes 
O
(
N2R

)
.

6. Relation to existing work

Majority of the existing works in the literature consider the first order Prony system (2). Specializing 
the results of the present paper to this special case, we have the following result.

Theorem 6.1. Consider the system (3) with ℓ1 = · · · = ℓK = 1, and with a priori bounds as elaborated in 
Section 2.
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1. For Nη ≫ 1 and for j = 1, . . . , K we have (here A =
∑K

m=1 |aj |)

κ2j−1,N # A,

κ2j,N # A

|aj |
· 1
N

.

2. If, on the other hand, all the nodes form a cluster, i.e. Nη∗ < 2πK, then

κ(p∗)
2j−1 # 1

(
Nη(j)

)2K ,

κ(p∗)
2j # 1

|aj |
· η(j)
(
Nη(j)

)2K .

In his influential paper [23], Donoho gave bounds for noise amplification (modulus of continuity Λ) for 
recovery of signed measures from their continuous spectra of width Ω on a lattice with step size ∆ in the 
superresolution setting Ω∆ ≪ π. The ratio 1

∆Ω is called the “super-resolution factor” (SRF). If the measure 

has at most ℓ nonzero coefficients,4 then Λ is shown to increase at least as ≈
( 1

∆
)2ℓ−1 and at most as 

≈
( 1

∆
)2ℓ+1. When ∆ → 0, the lower bound effectively scales as (SRF )2ℓ−1, and the same scaling was 

recently shown to hold also for the upper bound by Demanet and Nguyen [21].
No practical way to achieve the above bounds have been proposed, however, recent works of Candès and 

Fernandez-Granda [17,18,29] showed that under an additional assumption of node separation (effectively 
putting ℓ = 1 above) a stable recovery via total variation (TV) minimization is possible, both for the ℓ1-norm 
and for the locations of the spikes. Additional recent works [25,58] explore penalized TV approaches and 
provide similar stability estimates under various assumptions.

To express the above setting in the notations of this paper, we identify ∆ with η, Ω with N and ℓ with 
K, and put ℓj = 1. After this identification, the second part of Theorem 6.1 gives an upper bound for 
the modulus of continuity of the order (SRF )2ℓ, which is slightly worse than the estimates in [21,23]. Our 
setting is more general however, as the spikes are not assumed to lie on a grid. Furthermore, we also provide 
perturbation bounds for the locations of the spikes in terms of the super-resolution factor.

In a recent paper [43] the authors observed a phase transition for the (unstructured) condition number of 
Vandermonde matrices, a clear analogy with our results (note that in addition to a similar phase transition, 
our estimates also predict an exponential increase w.r.t. R in the condition number, see Subsection 4.1). 
In another related work, Demanet and Townsend [22] studied the problem of polynomial extrapolation of 
analytic functions, and they showed two different stability regimes, depending on the number of samples 
of the function – similar to what we have described in this paper. It would be highly interesting to relate 
these results to each other.

A method very similar to decimation, called “subspace shifting”, or interleaving, was proposed by Maravic 
& Vetterli in [42] in the context of analyzing performance of Finite Rate of Innovation (FRI) sampling 
in the presence of noise. Their idea was to interleave the rows of the Hankel matrix used in subspace 
estimation methods, effectively increasing the separation of closely spaced nodes. They confirmed this idea 
with numerical experiments. The results of our paper can be considered as a theoretical justification of their 
approach, and its extension to the more general system (3).

In statistical signal estimation, the Cramer–Rao Lower Bound (CRB) gives a lower bound for the variance 
of any unbiased estimator, see [37]. In [40] the authors only prove the CRB estimates for K = 1, 2 and N ≫ 1, 
for the system (2). On the other hand, the authors of [6] consider the more general system (3) (called 

4 The original paper considers the “sparse clumps” model, where ℓ is understood as the density of spikes per unit interval. For 
our purposes it is sufficient to consider just the “sparse” model.
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PACE model), and derive asymptotic estimates for N ≫ 1. These results are qualitatively similar to our 
Theorem 2.2 and Theorem 2.1. Obviously our results are different in nature from the CRB, but nevertheless 
the stated similarity is worth investigating further. Generalized ESPRIT is shown to asymptotically attain 
the CRB for N → ∞.

The effect of oversampling for FRI signals was also studied in [16], where they showed that it can 
improve performance by several orders of magnitude – a conclusion which is certainly consistent with our 
Theorem 2.1.

Stability analysis of Approximate Prony method, carried out by the authors of [47,48], suggests an 
increase in recovery error for the linear coefficients aj, again consistent with our results (see [10] for further 
details).

Performance analysis of MUSIC in another recent paper [41] (see also a recent preprint [28] regarding 
ESPRIT) suggests that it can resolve arbitrarily close frequencies below N−1 for sufficiently small noise 
– compare this with Theorem 2.1, which shows that the sensitivity indeed does not depend on the node 
separation.

The method of Filbir et al. [30] solves the system (2) via constructing a certain orthogonal polynomial 
on the unit circle. Their perturbation analysis gives an error in the nodes of the order of 

√
log N
N . Also, 

localized kernel methods were recently shown to provide stable estimation of instantaneous frequencies, 
under minimal separation assumption [19].

Decimation has recently appeared in zooming methods such as ZMUSIC [38] and zoom-ESPRIT [39]
for reducing computational complexity and memory requirements for estimating frequencies in a specified 
range. Experiments show also improvement in accuracy of the zooming techniques w.r.t. to their regular 
counterparts, thus it would be interesting to see whether an analysis similar to ours can be applied also in 
these cases.

A variant of decimation for Prony systems, called “arithmetic progression sampling” (APS) and described 
in detail in [54], was shown by Sidi to enhance substantially both the convergence acceleration and numerical 
stability properties of generalizations of the Richardson extrapolation process. It would be interesting to 
make this connection more elaborate and precise.

A kind of “stochastic decimation” (randomized arithmetic progression sampling) was recently used by 
Kaltofen et al. for outlier removal in sparse model synthesis and interpolation [36].

7. Some future directions

This paper is a part of a continuing research effort, investigating the applicability of algebraic methods 
to signal reconstruction problems [2,7–10,12–14,27,51]. Some of its findings were initially reported in [11]. 
Building upon the presented ideas, we have recently proposed a novel “decimated homotopy” algorithm, 
which has been shown to achieve the accuracy specified in Corollary 3.1, and outperform state of the art 
methods such as ESPRIT in the near-colliding setting [7,9]. Another extension of this work is reported in 
[2], providing tight global bounds (opposed to the first-order situation of this paper) for the accuracy of 
cluster recovery. Decimation also played a major role in our recent proposed algorithm for resolving the 
Gibbs phenomenon [8].

The numerical analysis of Prony systems in an important topic for further investigations. For instance, 
the bounds of Theorem 2.1 are valid for the noise model (8). However, in some applications such as [8], a 
more appropriate assumption is

|∆mk|
|mk|

" ρk−1,

for some fixed ρ. In general, “semi-global” analysis is required in this and similar settings, and we leave this 
for a future publication (cf. [2]).



JID:YACHA AID:1165 /FLA [m3L; v1.190; Prn:14/10/2016; 11:36] P.23 (1-25)
D. Batenkov / Appl. Comput. Harmon. Anal. ••• (••••) •••–••• 23

An important open question connected with stable solution of Prony systems is how to detect the near-
singular situations, and choose the problem structure vector ℓ = (ℓ1, . . . , ℓK) in an optimal way. One possible 
approach might involve symbolic-numeric techniques for polynomial systems, combined with analysis of the 
singularities of the mapping PN ([12,13]).

Under our assumption of a single cluster, decimation appears to provide near-optimal conditioning with 
respect to the number of samples N . While theoretical justification of this optimality would be desirable, a 
more important goal is to provide optimal solution when only some of the nodes form a cluster.
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