On the Global-Local Dichotomy in Sparsity
Modeling
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Abstract The traditional sparse modeling approach, when applied to inverse
problems with large data such as images, essentially assumes a sparse model for
small overlapping data patches and processes these patches as if they were indepen-
dent from each other. While producing state-of-the-art results, this methodology is
suboptimal, as it does not attempt to model the entire global signal in any meaningful
way—a nontrivial task by itself.

In this paper we propose a way to bridge this theoretical gap by constructing a
global model from the bottom-up. Given local sparsity assumptions in a dictionary,
we show that the global signal representation must satisfy a constrained underdeter-
mined system of linear equations, which forces the patches to agree on the overlaps.
Furthermore, we show that the corresponding global pursuit can be solved via local
operations. We investigate conditions for unique and stable recovery and provide
numerical evidence corroborating the theory.
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1 Introduction

1.1 The Need for a New Local-Global Sparsity Theory

The sparse representation model [17] provides a powerful approach to various
inverse problems in image and signal processing such as denoising [18, 37],
deblurring [14, 57], and super-resolution [47, 56], to name a few [38]. This model
assumes that a signal can be represented as a sparse linear combination of a few
columns (called atoms) taken from a matrix termed dictionary. Given a signal, the
sparse recovery of its representation over a dictionary is called sparse coding or
pursuit (such as the orthogonal matching pursuit, OMP, or basis pursuit, BP). Due to
computational and theoretical aspects, when treating high-dimensional data, various
existing sparsity-inspired methods utilize local patched-based representations rather
than the global ones, i.e., they divide a signal into small overlapping blocks
(patches), reconstruct these patches using standard sparse recovery techniques, and
subsequently average the overlapping regions [11, 17]. While this approach leads to
highly efficient algorithms producing state-of-the-art results, the global signal prior
remains essentially unexploited, potentially resulting in suboptimal recovery.

As an attempt to tackle this flaw, methods based on the notion of structured
sparsity [19, 29, 30, 32, 55] started to appear; for example, in [14, 37, 47] the
observation that a patch may have similar neighbors in its surroundings (often
termed the self-similarity property) is injected to the pursuit, leading to improved
local estimations. Another possibility to consider the dependencies between patches
is to exploit the multi-scale nature of the signals [36, 40, 53]. A different direction
is suggested by the expected patch log likelihood (EPLL) method [40, 52, 60],
which encourages the patches of the final estimate (i.e., after the application of the
averaging step) to comply with the local prior. Also, a related work [45, 46] suggests
promoting the local estimations to agree on their shared content (the overlap) as a
way to achieve a coherent reconstruction of the signal.

Recently, an alternative to the traditional patch-based prior was suggested in the
form of the convolutional, or shift-invariant, sparse coding (CSC) model [10, 25,
27, 28, 49, 54]. Rather than dividing the image into local patches and processing
each of these independently, this approach imposes a specific structure on the global
dictionary—a concatenation of banded circulant matrices—and applies a global
pursuit. A thorough theoretical analysis of this model was proposed very recently in
[41, 42], providing a clear understanding of its success.

The empirical success of the above algorithms indicates the great potential of
reducing the inherent gap that exists between the independent local processing of
patches and the global nature of the signal at hand. However, a key and highly
desirable part is still missing—a theory which would suggest how to modify the
basic sparse model to take into account the mutual dependencies between the
patches, what approximation methods to use, and how to efficiently design and learn
the corresponding structured dictionary.
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1.2 Content and Organization of the Paper

In this paper we propose a systematic investigation of the signals which are
implicitly defined by local sparsity assumptions. A major theme in what follows
is that the presence of patch overlaps reduces the number of degrees of freedom,
which, in turn, has theoretical and practical implications. In particular, this allows
more accurate estimates for uniqueness and stability of local sparse representations,
as well as better bounds on performance of existing sparse approximation algo-
rithms. Moreover, the global point of view allows for development of new pursuit
algorithms, which consist of local operation on one hand, while also taking into
account the patch overlaps on the other hand. Some aspects of the offered theory are
still incomplete, and several exciting research directions emerge as well.

The paper is organized as follows. In Section 2 we develop the basic framework
for signals which are patch-sparse, building the global model from the “bottom-
up,” and discuss some theoretical properties of the resulting model. In Section 3 we
consider the questions of reconstructing the representation vector and of denoising
a signal in this new framework. We describe “globalized” greedy pursuit algorithms
[43] for these tasks, where the patch disagreements play a major role. We show
that the frequently used local patch averaging (LPA) approach is in fact suboptimal
in this case. In Section 4 and Appendix E: Generative Models for Patch-Sparse
Signals, we describe several instances/classes of the local-global model in some
detail, exemplifying the preceding definitions and results. The examples include
piecewise constant signals, signature-type (periodic) signals, and more general
bottom-up models. In Section 5 we present results of some numerical experiments,
where in particular we show that one of the new globalized pursuits, inspired by
the ADMM algorithm [9, 23, 24, 33], turns out to have superior performance in all
the cases considered. We conclude the paper in Section 6 by discussing possible
research directions.

2 Local-Global Sparsity

We start with the local sparsity assumptions for every patch and subsequently
provide two complimentary characterizations of the resulting global signal space.
On one hand, we show that the signals of interest admit a global “sparse-like”
representation with a dictionary of convolutional type and with additional linear
constraints on the representation vector. On the other hand, the signal space is in fact
a union of linear subspaces, where each subspace is a kernel of a certain linear map.
To complement and connect these points of view, in Appendix E: Generative Models
for Patch-Sparse Signals, we show that the original local dictionary must carry a
combinatorial structure, and based on this structure, we develop a generative model
for patch-sparse signals. Concluding this section, we provide some theoretical
analysis of the properties of the resulting model, in particular uniqueness and
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stability of representation. For this task, we define certain measures of the dictionary,
similar to the classical spark, coherence function, and the restricted isometry
property, which take the additional dictionary structure into account. In general,
this additional structure implies possibly better uniqueness as well as stability to
perturbations; however, it is an open question to show they are provably better in
certain cases.

2.1 Preliminaries

Let [m] denote the set {1,2,...,m}. If D is an n x m matrix and S C [m] is an index
set, then Dy denotes the submatrix of D consisting of the columns indexed by S.

Definition 1 (Spark of a Matrix). Given a dictionary D € R™", the spark of D is
defined as the minimal number of columns which are linearly dependent:

o (D) :=min{j: IS C [m], |S| =, rank Dy < j}. (1)

Clearly o (D) < n+ 1.

Definition 2. Given a vector o € R™, the £, pseudo-norm is the number of nonzero
elements in «:

lello := #{j = a; # 0}

Definition 3. Let D € R™ be a dictionary with normalized atoms. The u,
coherence function (Tropp’s Babel function) is defined as

§):=max  max A
1 ( ) i€lm] SCm)\{}, |S|=Sj€ZS ’( ]>|

Definition 4. Given a dictionary D as above, the restricted isometry constant of
order k is the smallest number §; such that

(1 =89 llell3 < IDerll3 < (1 + &) llel3

for every o € R™ with |a]lo < k.
For any matrix M, we denote by % (M) the column space (range) of M.

2.2 Globalized Local Model

In what follows we treat one-dimensional signals x € RY of length N, divided into
P = N overlapping patches of equal size n (so that the original signal is thought
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to be periodically extended). The other natural choice is P = N — n + 1, but for
simplicity of derivations, we consider only the periodic case.

Let R| := [Inx,, 00... 0] e R™N and for each i = 2,...,P, we define R; €
R™N to be the circular column shift of R, by n - (i — 1) entries, i.e., this operator
extracts the i-th patch from the signal in a circular fashion.

Definition 5. Given local dictionary D € R™", sparsity level s < n, signal length
N, and the number of overlapping patches P, the globalized local sparse model is
the set

M =M (D,s,P,N):={xeR", Rx = Doy, |laillo <sVi=1,....P}. (2

This model suggests that each patch, R;x is assumed to have an s-sparse represen-
tation o, and this way we have characterized the global x by describing the local
nature of its patches.

Next we derive a “global” characterization of .# . Starting with the equations

Rix = Do, i=1,...,P,
and using the equality Iyxy = % Zf;l R!'R;, we have a representation
X = l iR.TR-x = i (lRTD) o
i o =1 l i

Let the global “convolutional” dictionary D¢ be defined as the horizontal concate-
nation of the (vertically) shifted versions of %D, i.e., (see Figure 1 on page 5)

1
Dg = [(-R{D)] e RV*mP, 3)
n i=1,..P

Let I' € R™ denote the concatenation of the local sparse codes, i.e.,

S|

==
g

i
=D

m: P -

Fig. 1 The global dictionary D¢. After permuting the columns, the matrix becomes a union of
circulant Toeplitz matrices, hence the term “convolutional”.
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o
o2
&p
Given a vector I” as above, we will denote by R; the operator of extracting its i-th
portion,!, i.e., R, = ;.
Summarizing the above developments, we have the global convolutional repre-
sentation for our signal as follows:
x = Dg¢I. (@)
Next, applying R; to both sides of (4) and using (2), we obtain
DO[,' = Rix = Rl'DGF. (5)

Let £2; := R;D¢ denote the i-th stripe from the global convolutional dictionary Dg.
Thus (5) can be rewritten as

[0...0D0...0| =2 (6)

=0

or (Q; — £2;) I' = 0. Since this is true for all i = 1,..., P, we have shown that the
vector I satisfies

01—
. |r=o.
Op — $2p
~————
=M eRnP>XmP

Thus, the condition that the patches R;x agree on the overlaps is equivalent to the
global representation vector I" residing in the null-space of the matrix M.

An easy computation provides the dimension of this null-space (see proof in
Appendix A: Proof of Lemma 1), or in other words the overall number of degrees
of freedom of admissible I".

'Notice that while R; extracts the i-th patch from the signal x, the operator R; extracts the
representation «; of R;x from I".
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Lemma 1. For any frame D € R™" (i.e., a full rank dictionary), we have
dimkerM = N(m—n+1).

Note that in particular for m = n, we have dimker M = N, and since in this case D
is invertible, we have R;x = Da; where o;; = D! R;x, so that every signal admits a
unique representation x = DI with [ = (D_lRlx, . ,D_lRpx)T.

As we shall demonstrate now, the equation MI" = 0 represents the requirement
that the local sparse codes {c;} are not independent but rather should be such that
the corresponding patches D; agree on the overlaps.

Definition 6. Define the “extract from top/bottom” operators Sy € R"~D*" and
Sp € RO—Dxn,

ST(OP) = [In—l 0] ’ SB(oltom) = [0 In_]] .

The following result is proved in Appendix B: Proof of Lemma 2.

Lemma2. Let I’ = [, ...,ap|". Under the above definitions, the following are
equivalent:
1. MI' = 0;
2. Foreachi=1,...,P, we have SgDa; = StDo;y .
Definition 7. Given I' = [ay, ..., ap]" € R™, the |- [|o.c0 pseudo-norm is defined
by

[T lo.00 := max_{lexillo.

i=1,....,P

.....

Thus, every signal complying with the patch-sparse model, with sparsity s for each
patch, admits the following representation.

Theorem 1. Given D, s, P, and N, the globalized local sparse model (2) is equiva-
lent to

M ={xeR": x=DgI', MT' =0, ||T [lo.00 < s} (7
={xeR": x=DgI, M,I' =0, | |lo.00 <s}.
where the matrix M, € RO=DPX"P g dofined as
SgD —SrD

SgD —StD
M, =
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Proof. If x € .4 (according to (2)), then by the above construction x belongs to the
set defined by the RHS of (7) (let’s call it .#* for the purposes of this proof only).
In the other direction, assume that x € .Z™*. Now Rix = R;DgI" = £2;I", and since
MI = 0, we have Rix = Q;,I" = DRN’,»F. Denote «; 1= 15,1", and so we have that
Rix = Da; with ||a;|lo < s, i.e., x € .# by definition. The second part follows from
Lemma 2. O

We say that «; is a minimal representation of x; if x; = Do; such that the matrix
Dgypp o; has full rank—and therefore the atoms participating in the representation are
linearly independent.?

Definition 8. Given a signal x € ., let us denote by p (x) the set of all locally
sparse and minimal representations of x:

p(x) i= {F €R™: |[lloco <5, x =Dl M =0, Dy, ¢ - is full rank}.

Let us now go back to the definition (2). Consider a signal x € .#, and let I" € p (x).
Denote S; := supp IéiF . Then we have Rix € % (Dy,), and therefore we can write
Rix = Pg,Rix, where Py, is the orthogonal projection operator onto % (Dy,). In fact,
since Ds, is full rank, we have Py, = DS[.D; where D;l_ = (DgiDgl.)_1 Dj is the
Moore-Penrose pseudoinverse of Ds;,.

Definition 9. Given a support sequence . = (Sy,...,Sp), define the matrix A o
as follows:
(In - Psl) Rl
Ay = (= Ps) R RPN,
(In - PSP) RP

The map A »» measures the local patch discrepancies, i.e., how “far” is each local
patch from the range of a particular subset of the columns of D.

Definition 10. Given a model .#, denote by X', the set of all valid supports, i.e.,

YXuy:={1,....,8): Ixe A, F'ammacp(x) st.Vi=1,...,P:
Si = suppR:I"} .
With this notation in place, it is immediate to see that the global signal model is a
union of subspaces.
Theorem 2. The global model is equivalent to the union of subspaces

M = U kerA o.

SEX y

2Notice that o; might be a minimal representation but not a unique one with minimal sparsity. For
discussion of uniqueness, see Subsection 2.3.
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Remark 1. Contrary to the well-known union of subspaces model [7, 35], the
subspaces {ker A} do not have in general a sparse joint basis, and therefore our
model is distinctly different from the well-known block-sparsity model [19, 20].

An important question of interest is to estimate dimker A o fora given . € X .
One possible solution is to investigate the “global” structure of the corresponding
signals (as is done in Subsection 4.1 and Subsection 4.2), while another option is to
utilize information about “local connections” (Appendix E: Generative Models for
Patch-Sparse Signals).

2.3 Uniqueness and Stability

Given a signal x € ., it has a globalized representation I € p (x) according to
Theorem 1. When is such a representation unique, and under what conditions can it
be recovered when the signal is corrupted with noise?

In other words, we study the problem

min || I ]|o.00 st. DgI' = Dgly, M =0 (Po.0o)
and its noisy version
min |[Iooo st |DgI” —Dgly|| <&, MIT =0 (Pfoo) -

For this task, we define certain measures of the dictionary, similar to the classical
spark, coherence function, and the restricted isometry property, which take the
additional dictionary structure into account. In general, the additional structure
implies possibly better uniqueness as well as stability to perturbations; however,
it is an open question to show they are provably better in certain cases.

The key observation is that the global model .# imposes a constraint on the
allowed local supports.

Definition 11. Denote the set of allowed local supports by
T :={T: 3(S,....T,...,Sp) € X 4}.
Recall the definition of the spark (1). Clearly o (D) can be equivalently rewritten as
0 (D) =min{j: 35,8, C [m], |S1 USy| =, rank Dg,us, <j}. ®)
Definition 12. The globalized spark o* (D) is
o* (D) :=min{j: 35,8, € 7, |S1 US| =, rank Dg,us, <Jj}- 9)

The following proposition is immediate by comparing (8) with (9).
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Proposition 1. ¢* (D) = o (D).
The globalized spark provides a uniqueness result in the spirit of [15].

Theorem 3 (Uniqueness). Let x € .# (D,s,N, P). If there exists I' € p (x) for
which || T ||p.c0 < %0* (D) (i.e., it is a sufficiently sparse solution of Py o), then it is
the unique solution (and so p (x) = {I"}).

Proof. Suppose that there exists I € p (x) which is different from I". Put I :=

I' — T, then || |lo00 < 0* (D), while DgI't = 0 and MI'} = 0. Denote §; :=

I@F 1. By assumption, there exists an index i for which B; # 0, but we must have

DB; = 0 for every j, and therefore Dyypp g, must be rank-deficient—contradicting

the fact that || 8;|| < o* (D). |
In classical sparsity, we have the bound

o) =zmin{s: pu;(s—1) =1}, (10)

where p; is given by Definition 3. In a similar fashion, the globalized spark ¢*
can be bounded by an appropriate analog of “coherence”—however, computing this
new coherence appears to be in general intractable.

Definition 13. Given the model .#, we define the following globalized coherence
function

*(s) := max  max d.,dy)|,
m o SEeTUT |S|=s j€S Z (- di)
keS\{j}

where U .7 :={S1US,: §1,5, € T}.

Theorem 4. The globalized spark o* can be bounded by the globalized coherence
as follows>:

o* (D) = min{s: uj (s) = 1}.

Proof. Following closely the corresponding proof in [15], assume by contradiction
that

o* (D) <min{s: uf (s) = 1}.
Let S* € J U J with |[S*| = ¢ (D) for which Dy« is rank-deficient. Then

the restricted Gram matrix G := Dg*DS* must be singular. On the other hand,
wi (1S*]) < 1, and so in particular

max > (dy.di)| < 1.
keS*\{j}

3In general min {s : puf (s—1) = 1} # max {s: puf (s) < 1} because the function ;¢} need not
be monotonic.
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But that means that G is diagonally dominant and therefore detG # O, a
contradiction. O
We see that uy (s + 1) < p(s) since the outer maximization is done on a
smaller set. Therefore, in general the bound of Theorem 4 appears to be sharper
than (10).
A notion of globalized RIP can also be defined as follows.

Definition 14. The globalized RIP constant of order k associated to the model .#
is the smallest number &y, such that

(1 =8c.a) llel3 < 1Dty < (1 + 8.) llxll

for every o € R" with suppa € 7.
Immediately one can see the following (recall Definition 4).

Proposition 2. The globalized RIP constant is upper bounded by the standard RIP
constant:

Sk < Ok

Definition 15. The generalized RIP constant of order k associated to signals of
length N is the smallest number SIEN) such that

(1=8")IrE < IDer B < (1+80) I3

for every I' € R™V satisfying MI" = 0, || lo.c0 < k.

Proposition 3. We have

S,EN) < Sk +(n—1) < 8k+(n_1).
n n

Proof. Obviously it is enough to show only the leftmost inequality. If I" = (a;)_,
and || |lo.co < k., this gives ||ogllo < k foralli = 1,..., P. Further, setting x :=

D™ we clearly have I' € p(x) and so supp " € X 4. Thus suppw; € 7, and
therefore

(1= 8k.a) leill3 < IDetil3 < (1 + 8k.) lletill

By Corollary 3 we know that for every I" satisfying MI" = 0, we have

N
1
IDGT 113 = ~ > 1Desl3.

i=1
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Now for the lower bound,
2 8k//l Sk/l 2
1D |3 = Zu w2 = (1-1+12%)

- (1- 2D e
n

For the upper bound,

146w N Sk +1
ID6I 15 < —— =53 lleall3 < ( 1+ =) Il

i=1
5 _1
< (1 y ke TN +n(" )) 2.

a

Theorem 5 (Uniqueness and Stability of Py o, via RIP). Suppose that 8;’;]) <1,
and suppose further that x = DI with | Io]l0.c0 = s and [|DgIo — x||2 < &. Then
every solution I" of the noise-constrained P ., problem

[« argmin || I"[lo.00 s.t. D6l =] < e MI" =0
satisfies

. 4g2
IF =Ll < —-
1 -6,

In particular, I is the unique solution of the noiseless Py problem.

Proof. Immediate using the definition of the globalized RIP:
~ ’ 1 ~ 2
I = Rl < T 1D (F=n) lBs— o (DG I = xllo+ID6 T = <11

482
N *
165

3 Pursuit Algorithms

In this section we consider the problem of efficient projection onto the model .Z .
First we treat the “oracle” setting, i.e., when the supports of the local patches (and
therefore of the global vector I") are known. We show that the local patch averaging
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(LPA) method is not a good projector; however, repeated application of it does
achieve the desired result.

For the non-oracle setting, we consider “local” and “globalized” pursuits. The
former type does not use any dependencies between the patches, and tries to
reconstruct the supports «; completely locally, using standard methods such as
OMP—and as we demonstrate, it can be guaranteed to succeed in more cases than
the standard analysis would imply. However a possibly better alternative exists,
namely, a “globalized” approach with the patch disagreements as a major driving
force.

3.1 Global (Oracle) Projection, Local Patch Averaging (LPA)
and the Local-Global Gap

Here we briefly consider the question of efficient projection onto the subspace
kerA ., given ..

As customary in the literature [12], the projector onto ker A »» can be called an
oracle. In effect, we would like to compute

xg (v,) = argmin|ly —x|3  s.t. Agx =0, (1)

giveny € RV,
To make things concrete, let us assume the standard Gaussian noise model:

y=x+.4(0,0%1), (12)

and let the mean squared error (MSE) of an estimator f (y) of x be defined as
usual, i.e., MSE (f) := E||f (y) — x[|3. The following is well-known.

Proposition 4. In the Gaussian noise model (12), the performance of the oracle
estimator (11) is

MSE (xg) = (dimkerA o) o>.

Let us now turn to the local patch averaging (LPA) method. This approach suggests
denoising an input signal by (i) breaking it into overlapping patches, (ii) denoising
each patch independently, followed by (iii) averaging the local reconstructions to
form the global signal estimate. The local denoising step is done by solving pursuit
problems, estimating the local supports S;, while the averaging step is the solution
to the minimization problem:

P
§=argmin ) |Rix — PRyl .

i=1
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where y is the noisy signal. This has a closed-form solution:

-1
Siea = (Z R,-TR,-) (Z RiTPs,»Ri> y= (% ZRZPS,.R,) 2 (13)
i i i

=My
Again, the following fact is well-established.

Proposition 5. In the Gaussian noise model (12), the performance of the averaging
estimator (13) is

N
MSE (5CLPA) = 02 Z /‘\i,

i=1

where {A1, ..., Ay} are the eigenvalues of MaAM?.
Thus, there exists a local-global gap in the oracle setting, illustrated in Figure 2
on page 14. In Subsection 4.1 we estimate this gap for a specific case of piecewise
constant signals.

The following result is proved in Appendix C: Proof of Theorem 6.

Theorem 6. For any ., we have

. k
lim MA = Pke]’Ay5
k—00

where Pyera., is the orthogonal projector onto kerA . Therefore for any Yy,
iterations of (13) starting at y converge to xg (y) with a linear rate.

From the proof it is evident that the rate of convergence depends on the eigenvalues
of M, (which turn out to be related to the singular values of A o). Analyzing these

ker(({ — Ps,)Rs) local-global gap

za(y) R Ps,Ray
er((I— Ps,)Ry)
Fig. 2 The local-global gap, oracle setting. Illustration for the case P = 2. In details, the noisy

signal y can be either projected onto ker A & (the point xg (y)) or by applying the LPA (the point
X = M, (v)). The difference between those two is the local-global gap, which can be significant.
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eigenvalues (and therefore the convergence rate) appears to be a difficult problem
for general .# and .#. In Theorem 8 we show one example where we consider the
related problem of estimating the sum Zf’zl A; appearing in Proposition 5, in the
case of the piecewise constant model (providing estimates for the local-global gap
as well).

To conclude, we have shown that the iterated LPA algorithm provides an efficient
method for computing the global oracle projection xg.

3.2 Local Pursuit Guarantees

Now we turn to the question of projection onto the model .# when the support of
I' is not known.

Here we show that running OMP [13, 43] on each patch extracted from the signal
in fact succeeds in more cases than can be predicted by the classical unconstrained
sparse model for each patch. We use the modified coherence function (which is
unfortunately intractable to compute):

7 () 1= max | max Z |(dr. d)| +r§1¢aSXZ|<dk,dj)|
keS\{j} kes

The proof of the following theorem is very similar to proving the guarantee for
the standard OMP via the Babel function (Definition 3); see e.g., [22, Theorem
5.14]—and therefore we do not reproduce it here.

Theorem 7. If n} (s) < 1, then running OMP on each patch extracted from any
x € M will recover its true support.

Since the modified coherence function takes the allowed local supports into
consideration, one can readily conclude that

N () <y (s) +pr(s—1),

and therefore Theorem 7 gives in general a possibly better guarantee than the one
based on u;.

3.3 Globalized Pursuits

We now turn to consider several pursuit algorithms, aiming at solving the
Py 0o/ P o Problems, in the globalized model. The main question is how to project
the patch supports onto the nonconvex set X .
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The core idea is to relax the constraint MxI" = 0, ||I"|lo.co < s and allow for
some patch disagreements, so that the term ||M[}| is not exactly zero. Intuitive
explanation is as follows: the disagreement term “drives” the pursuit, and the
probability of success is higher because we only need to “jump-start” it with the first
patch, and then by strengthening the weight of the penalty related to this constraint,
the supports will “align” themselves correctly. Justifying this intuition, at least in
some cases, is a future research goal.

33.1 Q-OMP

Given 8 > 0, we define

._ | Dc
Op = [ﬂM*]'

The main idea of the Q-OMP algorithm is to substitute the matrix Qg as a proxy
for the constraint M, I" = 0, by plugging it as a dictionary to the OMP algorithm.
Then, given the obtained support ., as a way to ensure that this constraint is met,
one can construct the matrix A and project the signal onto the subspace kerA o
(in Subsection 3.1 we show how such a projection can be done efficiently). The
Q-OMP algorithm is detailed in Algorithm 1. Let us reemphasize the point that
various values of B correspond to different weightings of the model constraint
M, I" = 0 and this might possibly become useful when considering relaxed models
(see Section 6).

Algorithm 1 The Q-OMP algorithm—a globalized pursuit

Given: noisy signal y, dictionary D, local sparsity s, parameter f > 0

1. Construct the matrix Qg.

y
0

the global support vector I with supp f=2.
3. Construct the matrix A ;> and project y onto kerA ;.

2. Run the OMP algorithm on the vector Y := [ ] with the dictionary Qg and sparsity sN. Obtain

3.3.2 ADMM-Inspired Approach
In what follows we extend the above idea and develop an ADMM-inspired pursuit
[9, 23, 24, 33].

We start with the following global objective:

X< argmin|ly —x|3 st.x=Dg[ M« =0, |Iooo <K.
X
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Clearly, it is equivalent to X = DGf' , where

ﬁ(—argn}jnﬂy—DGFH% st. My =0, [T o000 <K.

Applying Corollary 3, we have the following result.

Proposition 6. The following problem is equivalent to (14):

P

I« arg min > IRy — Do)}
=1

s.t. SgDa; = SyDoy and ”O[,'”o <Kfori=1,...,P.

17

(14)

15)

We propose to approximate solution of the nonconvex problem (15) as follows.
Define new variables z; (which we would like to be equal to ¢; eventually), and
rewrite the problem by introducing the following variable splitting (here Z is the

concatenation of all the z;’s):

N>

{ﬁ,

The constraints can be written in concise form

~—— N——

=A =B

and so globally we would have the following structure (for N = 3)

1
StD
A o TI
A =
*2 SrD
A (0%}
N, e’ I
=4 | StD |
—
=B

Our ADMM-inspired method is defined in Algorithm 2.

1 o = I 0 Zi
SgD T 0 S7D | \zi+1 ’

21
22
<3

P
} <« argmrlznz ”R,y —DOll'”% s.t. SgDo; = SrDzi41, o = 7, ||(X,‘||() <K.
=l
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Algorithm 2 The ADMM-inspired pursuit for P .

Given: noisy signal y, dictionary D, local sparsity s, parameter p > 0. The augmented Lagrangian
is

P P
Ly et fa G = Y IRy = Daall + 5 Y- o = (% ) il

i=1 i=1

1. Repeat until convergence:

a. Minimization wrt {e;} is a batch-OMP:

k
) o P )
a:,‘+1 <« argmin Ry — D13 + 5||Aot,~ —B (Zkl ) +u 3, stllaillo <K
i i1
- ~ D Ry
ot~ omP| D= \/ZA Y= \/EB )4 ] K
2 2 Z5'{+1 !

b. Minimization wrt z is a least squares problem with a sparse matrix, which can be
implemented efficiently:

7 arg min |Ar ! + Uk — Bz||?
c. Dual update:
Ut «— APkt — Bz + U

2. Compute 5 := DI

4 Examples

We now turn to present several classes of signals that belong to the proposed
globalized model, where each of these is obtained by imposing a special structure
on the local dictionary. Then, we demonstrate how one can sample from .# and
generate such signals. Additional examples are given in Appendix E: Generative
Models for Patch-Sparse Signals.

4.1 Piecewise Constant (PWC) Signals

The (unnormalized) Heaviside n x n dictionary H,, is the upper triangular matrix
with 1’s in the upper part (see Figure 3 on page 19). Formally, each local atom d;
of length n is expressed as a step function, given by d = [1i, Op—]", 1 <i < n,
where 1; is a vector of ones of length i. Similarly, 0,—; is a zero vector of length n—i.
The following property is verified by noticing that H; ! is the discrete difference
operator.
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Fig. 3 Heaviside dictionary Dictionary: Heaviside
0 1 2 3 4

H,.Redis 1, blue is 0.

Proposition 7. If a patch x; € R" has L — 1 steps, then its (unique) representation
in the Heaviside dictionary H, has at most L nonzeros.

Corollary 1. Let x € RY be a piecewise constant signal with at most L — 1 steps
per each segment of length n (in the periodic sense). Then

x€ .4 (H, LLN.P =N).

Remark 2. The model .# (H,,L,N,P = N) contains also some signals having
exactly L steps in a particular patch, but those patches must have their last segment
with zero height.

As an example, one might synthesize signals with sparsity ||I"|[p.co < 2 according
to the following scheme:

1. Draw at random the support of I"amma with the requirement that the distance
between the jumps within the signal will be at least the length of a patch (this
allows at most two nonzeros per patch, one for the step and the second for the
bias/DC).

2. Multiply each step by a random number.

The global subspace A~ and the corresponding global oracle denoiser xg (11) in
the PWC model can be explicitly described.

Proposition 8. Let x € RY consist of s constant segments with lengths £,, r =
1,...,s, and let I' be the (unique) global representation of x in M (i.e., p(x) =
{I'}). Denote B := diag (B,);~,, where B, = [ilgrxgr Then
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1. We have
ker Agypp - = ker (Iy — B) (16)

and therefore dimker Agpp - = 5 and MSE (Xg) = 562 under the Gaussian noise
model (12).
2. Furthermore, the global oracle estimator x¢ is given by

xG (y,supp I') = By, (17)

i.e., the global oracle is the averaging operator within the constant segments of
the signal.

Proof. Every signal y € kerAg,r has the same “local jump pattern” as x, and
therefore it also has the same global jump pattern. That is, every such y consists
of s constant segments with lengths £,. It is an easy observation that such signals
satisfy y = By, which proves (16). It is easy to see that dimker (I;, — B,) = 1, and
therefore

dimker (Iy — diag (B,)}_,) = s.

The proof of 1) is finished by invoking Proposition 4.
To prove (17), notice that by the previous discussion the null-space of Agyp,

T
is spanned by the orthogonal set e, = \/;T 0,...,0,1,1,...,1,0,....0| , r=
r N——
er
1,....s.Let K = [eq, ..., e, then xg = KKt = KKT. It can be easily verified by
direct computation that KK7 = B. O

It turns out that the LPA performance (and the local-global gap) can be accurately
described by the following result. We provide an outline of proof in Appendix D:
Proof of Theorem 8.

Theorem 8. Let x € RN consist of s constant segments with lengths £,, r =
1,...,s, and assume the Gaussian noise model (12). Then

1. There exists a function R (n, ) : N x N — RT, with R (n, @) > 1, such that

MSE () = 07 ) _R(n.L,).

r=1

2. The function R (n, ) satisfies:

20HP —3a+2

-1
a. R(l’l,Ol) =1+ a( — ) lfl’l =, where HéZ) = ZZ=1 kiz,'

_ 11 20 6a—11 o
b.R(I’l,O[)—ﬁ'f‘%‘f‘Wlfnﬁi.
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Corollary 2. The function R (n, ) is monotonically increasing in o (with n fixed)
and monotonically decreasing in n (with « fixed). Furthermore,
1. lim,seo R (2,0) = & —2 & 1.29;

2. limyoeo R (n,20) = 2 ~ 1.94.

Thus, for reasonable choices of the patch size, the local-global gap is roughly a
constant multiple of the number of segments, reflecting the global complexity of the
signal.

For numerical examples of reconstructing the PWC signals using our local-global
framework, see Subsection 5.2.

4.2 Signature-Type Dictionaries

Another type of signals that comply with our model are those represented via a
signature dictionary, which has been shown to be effective for image restoration [3].
This dictionary is constructed from a small signal, x € R™, such that its every patch
(in varying location, extracted in a cyclic fashion), Rxx € R”, is a possible atom
in the representation, namely, d; = R;x. As such, every consecutive pair of atoms
(i,i + 1) is essentially a pair of overlapping patches that satisfy Sgd; = Srdi+i
(before normalization). The complete algorithm is presented for convenience in
Algorithm 3.

Algorithm 3 Constructing the signature dictionary

1. Choose the base signal x € R™.

2. Compute D(x) = [Ryx,Ryx,...,R,x], where R; extracts the i-th patch of size n in a cyclic
fashion.

3. Normalization: l~)(x) = [di,...,dy], where d; =

Rix
[1Rixl *

Given D as above, one can generate signals y € RY, where N is an integer
multiple of m, with s nonzeros per patch, by the easy procedure outlined below.

1. Init: Construct a base signal b € R by replicating x € R™ N/m times (note that
b is therefore periodic). Sety = 0.
2. Repeatforj=1,...,s:

a. Shift: Circularly shift the base signal by # positions, denoted by shift(b, t;),
forsomet; = 0,1,...,m— 1 (drawn at random).
b. Aggregate: y = y + w;-shift(b, 1;), where w is an arbitrary random scalar.

Notice that a signal constructed in this way must be periodic, as it is easily seen that

ker Ao = span {shift (b, ,)}}_, .
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while the support sequence . is
S =(t1,ta, ..., 4], [ty ..ot + 1, .. [ty ..., 8] + N) ( mod m) .

Assuming that there are no additional relations between the single atoms of D
except those from the above construction, all . € X , are easily seen to be of the
above form.

In Figure 4 on page 23, we give an example of a signature-type dictionary D for
(n,m) = (6, 10) and a signal x with N = P = 30 together with its corresponding
sparse representation I”.

Remark 3. 1t might seem that every n x m Hankel matrix such as the one shown in
Figure 4 on page 23 produces a signature-type dictionary with a nonempty signal
space .# . However this is not the case, because such a dictionary will usually fail
to generate signals of length larger thann + m — 1.

4.2.1 Multi-Signature Dictionaries

One can generalize the construction of Subsection 4.2 and consider k-tuples of initial
base signals x;, . .., x;, instead of a single x. The desired dictionary D will consist of
corresponding k-tuples of atoms, which are constructed from those base signals. In
order to avoid ending up with the same structure as the case k = 1, we also require
a “mixing” of the atoms. The complete procedure is outlined in Algorithm 4.

Algorithm 4 Constructing the multi-signature dictionary

m

1. Input: n, m, k such that k divides m. Put r := =

2. Select a signal basis matrix X € R"™<* and r nonsingular transfer matrices M; € R, i =
1,...,r.

3. Repeatfori=1,...,r:

a. Let Y; = [y,-,l, ...,y,-,k] € R™*, where each yij is the i-th patch (of length n) of the
signal x;.
b. Put the k-tuple [dy 1, ..., dix] = Yi X M; as the next k atoms in D.

In order to generate a signal of length N from .#, one can follow these steps
(again we assume that m divides N ):

1. Create a base signal matrix X¢ € RV** by stacking k2 copies of the original
basis matrix X. Sety = 0.
2. Repeatforj=1,...,s:

a. Select a base signal b; € % (X°) and shift it (in a circular fashion) by some
fj=0,1,...,R—1.

b. Aggregate: y = y + shift(b;, #;) (note that here we do not need to multiply by
a random scalar).
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n

m

(a) The dictionary matrix D

0.4

0.3

0.2

0.1

0.0

-0.1

_0_2 1 | | | |
0 5 10 15 20 25 30

(b) The signal x € kerA o for . generated by 1; = 6 and s = 1, with
P=N=30.

0 5 10 15 20 25

(c) The coefficient matrix I" corresponding to the signal x in (c¢)

Fig. 4 An example of the signature dictionary with n = 6, m = 10. See Remark 3.
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This procedure will produce a signal y of local sparsity k - s. The corresponding
support sequence can be written as

Yz(sl,sz,...,sN),
where s; = 51 + i ( mod m) and

ST = [(l‘],1),(2‘1,2),...,(tl,k),...,(ls, 1),(1‘“4,2),...,(1“?,]{)].

Here (tj, i) denotes the atom d,; ; in the notation of Algorithm 4. The corresponding
signal space is

kerA s = span {shift (X, tj)};:l ,

and it is of dimension k - s.
An example of a multi-signature dictionary and corresponding signals may be
seen in Figure 5 on page 25.

4.3 Convolutional Dictionaries

An important class of signals is the sparse convolution model, where each signal
x € RY can be written as a linear combination of shifted “waveforms” d; € R", each
d; being a column in the local dictionary D’ € R™™. More conveniently, any such
x can be represented as a circular convolution of d; with a (sparse) “feature map”
¥; € RY:

X = Zd, XN l/li. (18)
i=1

Such signals arise in various applications, such as audio classification [6, 26,
50], neural coding [16, 44], and mid-level image representation and denoising
[31, 58, 59].

Formally, the convolutional class can be recast into the patch-sparse model of
this paper as follows. First, we can rewrite (18) as

x=[C Cy...C,| Y,
N’
=E

where each C; € RV*V is a banded circulant matrix with its first column being equal
tod; and ¥ € RM" is the concatenation of the ¥;’s. It is easy to see that by permuting
the columns of E, one obtains precisely the global convolutional dictionary nDg
based on the local dictionary D’ (recall (3)). Therefore we obtain
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0.2

o m m m
4 )
6
8
10
5‘ 1‘0 1‘5 2‘0 25

(b) The first signal and its sparse representation in kerA o with N =24, s=1and#; =5.

=

N

6-_ll .ll .ll -Il

©

10

5‘ 1‘0 1‘5 2‘0 25
(c) The second signal and its sparse representation in kerA o .

Fig. 5 Example of multi-signature dictionary withn = 10, m = 12, and k = 2.

x=Dg(D)I". (19)
N——
=Dy

While it is tempting to conclude from comparing (19) and (4) that the con-
volutional model is equivalent to the patch-sparse model, an essential ingredient
is missing, namely, the requirement of equality on overlaps, MI'’ = 0. Indeed,
nothing in the definition of the convolutional model restricts the representation ¥
(and therefore I'"); therefore, in principle the number of degrees of freedom remains
Nm, as compared to N (m — n + 1) from Proposition 15.
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To fix this, following [42], we apply R; to (19) and obtain R;x = R[D’GI" ’. The
“stripe” 2] = R;Dy; has only (2n — 1) m nonzero consecutive columns, and in
fact the nonzero portion of 2/ is equal for all i. This implies that every x; has a
representation x; = @y; in the “pseudo-local” dictionary

O (D) := [z;"—“n LD ...Z(T"‘”D’] e R Cr=bm,

where the operators Zg‘) and Z(Tk) are given by Definition 6 in Appendix B: Proof of
Lemma 2. If we now assume that our convolutional signals satisfy

lyillo<s Vi,

then we have shown that they belong to .# (® (D’),s,P,N) and thus can be
formally treated by the framework we have developed.

It turns out that this direct approach is quite naive, as the dictionary © (D)
is extremely ill-equipped for sparse reconstruction (e.g., it has repeated atoms,
and therefore u (® (D')) = 1). To tackle this problem, a convolutional sparse
coding framework was recently developed in [42], where the explicit dependencies
between the sparse representation vectors p; (and therefore the special structure
of the corresponding constraint M (D’) I'’ = 0) were exploited quite extensively,
resulting in efficient recovery algorithms and nontrivial theoretical guarantees. We
refer the reader to [42] for further details and examples.

5 Numerical Experiments

In this section, we test the effectiveness of the globalized model for recovering the
signals from Section 4, both in the noiseless and noisy cases. For the PWC, we show
a real-world example. These results are also compared to several other approaches
such as the LPA, total variation denoising (for the PWC), and a global pursuit based
on OMP.

5.1 Signature-Type Signals

In this section we investigate the performance of the pursuit algorithms on signals
complying with the signature dictionary model elaborated in Subsection 4.2,
constructed from one or two base signals (k = 1,2), and allowing for varying
values of s. We compare the results to both LPA and a global pursuit, which uses
the dictionary explicitly constructed from the signature model. In detail, the global
dictionary D* is an N x (km) matrix consisting of the base signal matrix X¢ and all
its shifts, i.e. (recall the definitions in Subsection 4.2.1)
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* . G m—1
D* = [shlft (x ,l)izo:l )

Given that, the global OMP algorithm is defined to run for & - s steps on D*.

5.1.1 Constructing the Dictionary

In the context of the LPA algorithm, the condition for its success in recovering the
representation is a function of the mutual coherence of the local dictionary—the
smaller this measure, the larger the number of nonzeros that are guaranteed to be
recovered. Leveraging this, we aim at constructing D € R™™ of a signature type
that has a small coherence. This can be cast as an optimization problem

D =D (x), xo = arg m&@n w (D)),
XG m

where D (x) is computed by Algorithm 3 (or Algorithm 4) and u is the (normalized)
coherence function.

In our experiments, we choose (n, m) = (15, 20) for k = 1 and (rn, m) = (10, 20)
for k = 2. We minimize the above loss function via gradient descent, resulting in
u(D(x)) = 0.20 fork = 1 and p = 0.26 for k = 2. We used the TensorFlow
open source package [1]. As a comparison, the coherence of a random signature
dictionary is about 0.5.

5.1.2 Noiseless Case

In this setting, we test the ability of the globalized OMP (Subsection 3.3.1) to
perfectly recover the sparse representation of clean signature-type signals. Figure 6
compares the proposed algorithm (for different choices of g € {0.25,0.5,1,2,5})
with the LPA by providing their probability of success in recovering the true sparse
vectors, averaged over 10° randomly generated signals of length N = 100. For
brevity we show only the results for k = 1 here.

From a theoretical perspective, since w(D) = 0.20, the LPA algorithm is
guaranteed to recover the representation when ||[I'|jp00 < 3, as indeed it does.
Comparing the LPA approach to the globalized OMP, one can observe that for
B > 1 the latter consistently outperforms the former, having a perfect recovery
for | I"||o.co < 4. Another interesting insight of this experiment is the effect of 8 on
the performance; roughly speaking, a relatively large value of this parameter results
in a better success rate than the very small ones, thereby emphasizing importance
of the constraint M,I" = 0. On the other hand, 8 should not be too large since
the importance of the signal is reduced compared to the constraint, which might
lead to deterioration in the success rate (see the curve that corresponds to 8 = 5 in
Figure 6).
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Fig. 6 Probability of the success (%) of the globalized OMP (for various values of ) and the
LPA algorithms to perfectly recover the sparse representations of test signals from the signature
dictionary model, averaged over 10> realizations, as a function of sparsity per patch.

5.1.3 Noisy Case

In what follows, the stability of the proposed globalized ADMM-inspired pursuit
is tested and compared to the traditional LPA algorithm, as well as to the global
OMP. In addition to the above, we provide the restoration performance of the
oracle estimator, serving as an indication for the best possible denoising that can
be achieved. In this case, the oracle projection matrix Ay is constructed according to
the ground-truth support S.

We generate ten random signature-type signals, where each of these is corrupted
by white additive Gaussian noise with standard deviation o, ranging from 0.05
up to 0.5. The global number of nonzeros is injected to the global OMP, and the
information regarding the local sparsity is utilized both by the LPA algorithm as
well as by our ADMMe-inspired pursuit (which is based on local sparse recovery
operations). Following Figure 7 parts (a,c), which plot the mean squared error
(MSE) of the estimation as a function of the noise level, the ADMM-inspired
pursuit achieves the best denoising performance, having similar results to the oracle
estimator for all noise levels and sparsity factors. The source of superiority of
the ADMM-inspired pursuit might be its inherent ability to obtain an estimation
that perfectly fits to the globalized model. The second best algorithm is the global
OMP; using complete global information about the signal space, this fact is to be
expected. The LPA algorithm is the least accurate; it shows that for our signals the
assumption of patch independence severely degrades performance. This sheds light
on the difficulty of finding the true supports, the nontrivial solution of this problem,
and the great advantage of the proposed globalized model.
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(c) k=2,5 =1, denoising (d) k=2,s =1, stability

Fig. 7 (a,c) Denoising performance of the global OMP, ADMM-inspired pursuit, and LPA
algorithm for signals from the signature model with (@) k = 1,s = 5 and (c)k = 2,5 = 1.
The performance of the oracle estimator is provided as well, demonstrating the best possible
restoration that can be achieved. (b, d) Stability of the ADMM-inspired pursuit and LPA algorithm
for (b)k = 1,s = 5and (d) k = 2,5 = 1. For (a, b) the signal size was N = 100, while for (c, d)
it was N = 80.

Similar conclusion holds for the stable recovery of the sparse representations.
Per each pursuit algorithm, Figure 7 parts (b, d) illustrate the £, distance between
the original sparse vector I" and its estimation r , averaged over the different noise
realizations. As can be seen, the ADMM-inspired pursuit achieves the most stable
recovery, outperforming the LPA algorithm especially in the challenging cases of
high noise levels and/or large sparsity factors.
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5.2 Denoising PWC Signals
5.2.1 Synthetic Data

In this scenario, we test the ability of the globalized ADMM-inspired pursuit to
restore corrupted PWC signals and compare these to the outcome of the LPA
algorithm.

In addition, we run the total variation (TV) denoising [48] on the signals, which
is known to perform well on PWC. We chose the regularization parameter in the
TV by running an exhaustive search over a wide range of values per input signal
and picked the one that minimizes the MSE between the estimated and the true
signal. Notice that this results in the best possible denoising performance that can
be obtained by the TV.

The projected versions of both ADMMe-inspired pursuit and LPA are provided
along with the one of the oracle estimator. Following the description in Section 4.1,
we generate a signal of length N = 200, composed of patches of size n = m =
20 with a local sparsity of at most 2 nonzeros in the £( ., sense. These signals
are then contaminated by a white additive Gaussian noise with o in the range of
0.1t00.9.

The restoration performance (in terms of MSE) of the abovementioned algo-
rithms and their stability are illustrated in Figure 8, where the results are averaged
over 10 noise realizations. As can be seen, the globalized approach significantly
outperforms the LPA algorithm for all noise levels. Furthermore, when o < 0.5, the
ADMM-inspired pursuit performs similarly to the oracle estimator. One can also
notice that the ADMM-inspired pursuit and its projected version result in the very
same estimation, i.e., this algorithm forces the signal to conform with the patch-
sparse model globally. On the other hand, following the visual illustration given in
Figure 9, the projected version of the LPA algorithm has only two nonzero segments,

—5-LPA I S —F— Stability LPA
—& Projected LPA 140 Stability Globalized ADMM
Globalized ADMM
Projected Globalized ADMM 120
10% E|~I- Oracle Projection 4
v ., 100 —
= /
w ] ~
%J e { r_" 80 —
e 3= /{/
- - — 60 -
— S - | //’
- 40 i
20—
I | 0 i | |
0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
a ag
(a) Denoising (b) Stability

Fig. 8 (a) Denoising performance and (b) stability for various noise levels, tested for signals from
the piecewise constant model with || I [lo.co < 2.
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Fig. 9 Denoising of a PWC 15 w
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which are the consequence of almost complete disagreement in the support (local
inconsistency). This is also reflected in Figure 8a, illustrating that even for a very
small noise level (o = 0.1), the projected version of the LPA algorithm has a very
large estimation error (MSE = 0.18) compared to the one of the ADMM-inspired
pursuit (MSE & 0.0004), indicating that the former fails in obtaining a consistent
representation of the signal. The TV method is unable to take into account the local
information, resulting in reconstruction of lesser quality than both the ADMM-
inspired and the LPA.

5.2.2 Real-World Data

Here we apply the globalized ADMM for the PWC model on a real-world DNA
copy number data from [51]. The data (see also [34]) come from a single experiment
on 15 fibroblast cell lines with each array containing over 2000 (mapped) BACs
(bacterial artificial chromosomes) spotted in triplicate. The results (see Figure 10)
appear to be reasonably significant.

6 Discussion

In this work we have presented an extension of the classical theory of sparse
representations to signals which are locally sparse, together with novel pursuit
algorithms. We envision several promising research directions which might emerge
from this work.
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Fig. 10 Applying the PWC reconstruction to a single fibroblast cell line, as described in [51]. The
value of A in TV was chosen empirically based on visual quality. For the ADMM, we chose n = 40
and k = 2. The ordinate is the normalized average of the log base 2 test over reference ratio of the
cell line.

6.1 Relation to Other Models

Viewed globally, the resulting signal model can be considered a sort of “structured
sparse” model; however, in contrast to other such constructions ([29, 30, 32, 55] and
others), our model incorporates both structure in the representation coefficients and
a structured dictionary.

The recently developed framework of convolutional sparse coding (CSC) [41,42]
bears some similarities to our work, in that it, too, has a convolutional representation
of the signal via a dictionary identical in structure to Dg. However, the underlying
local sparsity assumptions are drastically different in the two models, resulting in
very different guarantees and algorithms. That said, we believe that it would be
important to provide precise connections between the results, possibly leading to
their deeper understanding. First steps in this direction are outlined in Subsec-
tion 4.3.

6.2 Further Extensions
The decomposition of the global signal x € RY into its patches,

x — (Rix)" (20)

i=1"
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is a special case of a more general decomposition, namely,
P
X = (Wigzix),:l s (21)

where &7; is the (orthogonal) projection onto a subspace W; of R and w; are some
weights. This observation naturally places our theory, at least partially, into the
framework of fusion frames, a topic which is generating much interest recently in
the applied harmonic analysis community [21, Chapter 13]. In fusion frame theory,
which is motivated by applications such as distributed sensor networks, the starting
point is precisely the decomposition (21). Instead of the reconstruction formula
x =Y ; LRI R;x, in fusion frame theory we have

X = ZW?S;) (Px),

where Sy is the associated fusion frame operator. The natural extension of our work
to this setting would seek to enforce some sparsity of the projections ZZ;x. Perhaps
the most immediate variant of (20) in this respect would be to drop the periodicity
requirement, resulting in a slightly modified R; operators near the endpoints of the
signal. We would like to mention some recent works which investigate different
notions of fusion frame sparsity [2, 4, 8].

Another intriguing possible extension of our work is to relax the complete
overlap requirement between patches and consider an “approximate patch sparsity”
model, where the patch disagreement vector M I is not zero but “small.” In some
sense, one can imagine a full “spectrum” of such models, ranging from a complete
agreement (this work) to an arbitrary disagreement (such as in the CSC framework
mentioned above).

6.3 Learning Models from Data

The last point above brings us to the question of how to obtain “good” models,
reflecting the structure of the signals at hand (such as speech/images, etc.). We
hope that one might use the ideas presented here in order to create novel learning
algorithms. In this regard, the main difficulty is how to parametrize the space
of allowed models in an efficient way. While we presented some initial ideas in
Appendix E: Generative Models for Patch-Sparse Signals, in the most general
case (incorporating the approximate sparsity direction above), the problem remains
widely open.
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Appendix A: Proof of Lemma 1

Proof. Denote Z := ker M and consider the linear map A : Z — R given by the
restriction of the “averaging map” Dg : R"" — RY to Z.

1. Let us see first that im (A) = R". Indeed, for every x € R, consider its patches
x; = Rix. Since D is full rank, there exist {&;} for which Do; = x;. Then setting
I' := (ay,...,ap), we have both DgI" = x and MI" = 0 (by construction, see
Section 2), i.e., I' € Z and the claim follows.

2. Define

J:=%kerD xkerD x ...kerD C R™,

We claim that J = ker A.

a. In one direction, let I' = (¢, ...,ap) € kerA, i.e., MI" = 0 and DgI" = 0.
Immediately we see that %Da; = 0 for all i, and therefore «; € ker D for all i,
thus I" € J.

b. In the other direction, let I" = (a1, ...,ap) € J, i.e., Da; = 0. Then the local
representations agree, i.e., MI" = 0, thus I' € Z. Furthermore, DgI" = 0 and
therefore I" € kerA.

3. By the fundamental theorem of linear algebra, we conclude

dimZ = dimim (A) + dimkerA = N + dimJ
=N+ m—nN=N@m—n+1).

Appendix B: Proof of Lemma 2

We start with an easy observation.

Proposition 9. For any vector p € RY, we have

1 N
lol3 =~ > IRipll3.
j=1

Proof. Since

N 1 N 1 N n
ol =D pf =5 2 nef = 2D 0
Jj=1 j=1

j=1 k=1
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we can rearrange the sum and get

n

N n
2
llolly =
1k

N 1 n N 1
>0 = ;ZZP%/‘H) mod N = ;Z
j=1

=1 k=1 j=1 j=1 k=

1

—— N

=~ > IRl
j=1

1 2
0 P+k) mod N
k 1

Corollary 3. Given MI" = 0, we have

N
1
ly—Del |5 = - > IRy — Da3.
j=1

Proof. Using Proposition 9, we get

N N
1 1
ly=Dall3 = =3 IRy = RDGT I3 =~} IRy — 2|3,
j=1 j=1

Now since MI" = 0, then by definition of M, we have £2;I" = Da; (see (6)), and
this completes the proof. O
Recall Definition 6. Multiplying the corresponding matrices gives

Proposition 10. We have the following equality foralli =1, ... P:

SpR; = STR; 1. (22)
To facilitate the proof, we introduce extension of Definition 6 to multiple shifts as
follows.
Definition 16. Let n be fixed. Fork =0,...,n—1let

1. S(Tk )= [I,,_k O] and Sl(gk) = [0 I,l_k] denote the operators extracting the top (resp.
bottom) n — k entries from a vector of length n; the matrices have dimension
(n—k)xn.

(k) 0
2. 79 = 55 |and Z® = | V|
kan ST

(k)
W = [""@"} and WO [ST } |
SB Oan

Note that Sp = Sg) and S = S(Tl ). We have several useful consequences of the
above definitions. The proofs are carried out via elementary matrix identities and
are left to the reader.
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Proposition 11. For any n € N, the following hold:

1. ZW = (z?))k and 7V = (zg”)kfork =0.....n—1;
WEWE = W and wWPWP = wy fork=0,....n—1;
WOWY = wOW® forjk=0.....n—1;

ZgC) = ch) Wl(,k) and Z;k) = Z;k) W;k) fork=0,....,.n—1;

W = ZOWEVZD ana w = ZPWE Nz fork =1, .n—1;

S O

ZP70 = w® ana ZP 70 = W fork =0.....n—1;

7. (= 1) Iy = Y7 (wgp + W),

Proposition 12. [f the vectors uy, . ..,uy € R" satisfy pairwise
Spu; = Stutiy1,

then they also satisfy for each k = 0, ...,n — 1 the following:

Wlu = 2 ui. (23)
Z0u; = WOu; 4. 24)

Proof. Tt is easy to see that the condition Sgu; = S7u;+1 directly implies
Zgl)u,- = W;-I)MH_], Wél)l/ti = Z;vl)lth_l Vi. (25)

Let us first prove (23) by induction on k. The base case k = 1 is precisely (25).
Assuming validity for k — 1 and Vi, we have

WPy, =z WDz, (by Proposition 11, item 5)
=z Wy Wi i (by (25))

=Z§1)W§”W§k_l)ui+1 (by Proposition 11, item 3)

:Z;I)W;I)Z(Tk_l)ui% (by the induction hypothesis)

:Z(TI)Z;k_l)u,-Jrk (by Proposition 11, item 4)
:Z(Tk)u,<+k. (by Proposition 11, item 1)

To prove (24) we proceed as follows:
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Fig. 11 Tllustration to the
proof of Proposition 12. The
green pair is equal, as well as

the red pair. It follows that the
blue elements are equal as
well.
Ui
Ui+
Uit
Zg() U = Zg() Wl(gk) U; (by Proposition 11, item 4)

= Zl(gk)Z;k)qu (by (23) which is already proved)

= W;k)ui+k. (by Proposition 11, item 6)
This finishes the proof of Proposition 12. O

Example 1. To help the reader understand the claim of Proposition 12, consider the
case k = 2, and take some three vectors u;, uj+1, Ui+>. We have Sgu; = Sru;4; and
also Sgu;+1 = Stuiys. Then clearly Sg)ui = S(Tz)ui+2 (see Figure 11 on page 37)
and therefore Wéz)ui = Z;Z) Uit.

Let us now present the proof of Lemma 2.
Proof. We show equivalence in two directions.

e (1) = (2): Let MI" = 0. Define x := DI, and then further denote x; := R;x.
Then on the one hand:

Xi = RiDGF
= ;I (definition of £2;)

On the other hand, because of (22) we have SgR;x = S7R;+1x, and by combining
the two, we conclude that SgDa;; = STDotj4 1.

¢ (2) = (1): In the other direction, suppose that SgDo; = SyDa;y1. Denote
u; := Da;. Now consider the product §2;I" where §2; = R;D¢. One can easily be
convinced that in fact
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n—1
1
e (Z (Zl(%k)”i—k + Z(Tk)ui+k> + “i) .
" \i=i
Therefore
1 n—1
(2i—0) I = - (ui + (Zl(gk) ui— + Z(Tk)lfii+k)) —u;
" k=1
1 n—1
~ (Z (W(T")ui + Wg”:‘) —(n—1) Mi) (by Proposition 12)
n
k=1

=0. (by Proposition 11, item 7)

Since this holds for all i, we have shown that MI" = 0.

Appendix C: Proof of Theorem 6

Recall that My = % Zi RiTPS[R,'. ‘We first show that M, is a contraction.

Proposition 13. | M|, < L.

Proof. Closely following a similar proof in [45], divide the index set {1, ..., N} into
n groups representing non-overlapping patches: fori = 1,...,nlet

K (i) := {i,i—}-n,...,i—}-({%{J—l)n} mod N.

Now

N
IMaxll, = = | Y RIPyRix
i=1

2

n

> RIPRx

i=1 jeK(i) )

S |-

n

< ;Z Z RJTPjRjX

i=1 ||jek (i) )

—_—

By construction, R;R] = 0,x, for j,k € K (i) and j # k. Therefore for all i =

1,...,n we have
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2
> RIPRa| = 3 |RIP Rl

ek () ,  JEKG)

< > |Ral; < I3

JEK()

Substituting in back into the preceding inequality finally gives

[Max||, < Z Ixll, = lx]l, -

Now let us move on to prove Theorem 6.

Proof. Define
=(—P,)R.
It is easy to see that
> PIPi=AL Ay
Let the SVD of A &~ be
Ay =UXVT.

Now

v 2yl = A;Ay = Zﬁfﬁ, = ZR,TR,’ - ZR,TPs,'Ri
1 1 1
=T
=nl-T.

Therefore T = nl — VX VT, and

n

1 1 2
My=-T=I-—-vX? = V(I— —) v,
n n

2
This shows that the eigenvalues of My are 7; = 1 — 07’ where {o0;} are the singular
values of A &». Thus we obtain

M% =V diag {tik} Ve,
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If 0; = O then 7; = 1, and in any case, by Proposition 13, we have |7;|] < 1. Let
the columns of the matrix W consist of the singular vectors of A & corresponding to
o; = 0 (and so span W = .4 (A»)), then

lim M% = ww'.
k—00

Thus, as k — oo, M5 tends to the orthogonal projector onto .4 (As). The
convergence is evidently linear, the constant being dependent upon {t;}. O

Appendix D: Proof of Theorem 8

Recall that the signal consists of s constant segments of corresponding lengths
£y, ...,¢;. We would like to compute the MSE for every pixel within every such
segment of length & := ¢,. For each patch, the oracle provides the locations of the
jump points within the patch.

Let us calculate the MSE for pixel with index O inside a constant (nonzero)
segment [—k, @ — k — 1] with value v (Figure 12 on page 41 might be useful). The
oracle estimator has the explicit formula

b;

1 ¢ 1 -

ar.k

= - _— i) 26

%, an]__ajHZ(vﬂ) (26)
=1 i=aj

where j = 1, ..., n corresponds to the index of the overlapping patch containing the

pixel, intersecting the constant segment on [aj, bj], so that

a; = —min (k,n — j),

bj=min(e—k—1,j—1).

Now, the oracle error for the pixel is

b.
l - 1 d
~r.k
X, —v=— P EEEE—— i
A n;bj—aﬂrlz;z
= 1=q

a—k—1

E CionkZis

i=—k

where the coefficients c; , x are some positive rational numbers depending only on
i,a,n and k. It is easy to check by rearranging the above expression that
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Fig. 12 The oracle estimator for the pixel O in the segment (black). The orange line is patch
number j = 1,...,n, and the relevant pixels are between a; and b;. The signal itself is shown to
extend beyond the segment (blue line).

> Ciamk = 1. 27)

and furthermore, denoting d; := ¢; ..« for fixed o, n, k, we also have that
d_k < d—k—i—l <.. .d() > dl > .. -da—k—l- (28)

Example2. n=4, a =3

e Fork=1:
S LR T A CILE T RS E RN
_ 7 L2
T o4 T o T o @
SN—— SN—— N——
d—y do d
e Fork=2:
"’vk_v—l(1+l+l+1) +l(l+l+l> +1(1+1)
a “3\3T373 DTG\3T3 T )T a\3 T3
B 7. .1
YR VR S

Now consider the optimization problem

minclc st1fc=1.
cER*
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It can be easily verified that it has the optimal value é attained at ¢* = «1. From
this, (27) and (28), it follows that

Since the z; are i.i.d., we have
2 a—k—1
ark _ 2 2
E (xA - v) =0 E Ciank

i=—k

while for the entire nonzero segment of length o« = £,

(S () - En ) = E Y e

k=0 k=0 k=0 i=—k
Defining
a—1 a—k—1
— 2
R(n,a) = E E Cianio
k=0 i=—k

we obtain that R (n, @) > 1 and furthermore
Elfa—x|*> =) E =0>) R(ntl)>so’.
r=1 r=1

This proves item (1) of Theorem 8. For showing the explicit formulas for R (n, «)
in item (2), we have used automatic symbolic simplification software MAPLE [39].
By construction (26), it is not difficult to see that if n > « then

la_l k n—oa+1 2
Ko = L3 (S Ot -+ )
=0 =0 o
—a+1
+ Z 2Hy— — ak1+L—H,’)2>,
Jj=k+1 o

where Hy, := Zle % is the k-th harmonic number. This simplifies to

aoHY +2—3a) -1
n2

R(n,a) =1+

3
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where H,Ez) = Zk L is the k-th harmonic number of the second kind.

i=1

On the other hand, for n < % we have

n—2 a—n a—1
Ry = clh+ > e+ Y i
k=0 k=n—1 k=a—n+1
where
T k+1, S on—in, & k—in
1 _ _
C}(1])( = ﬁ(Z (Hn—l _Iij+ T) + Z ( n ) +Z (Hn—l _Hk+ n ) )
=k i=n—k i=0
and

k . 2 k+n—1 .\ 2
1 —k+n k+n-—
2 _ J J
——< > ()2 (—))
j=k—n+1 j=k+1

Automatic symbolic simplification of the above gives

R(n. ) 11 +2(x 5 +oe—l
no)=—+ —— — + ——.
18  3n  18n2 3n3

Appendix E: Generative Models for Patch-Sparse Signals

In this section we propose a general framework aimed at generating signals from
the patch-sparse model. Our approach is to construct a graph-based model for the
dictionary and subsequently use this model to generate dictionaries and signals
which turn out to be much richer than those considered in Section 4.

Local Support Dependencies

We start by highlighting the importance of the local connections (recall Lemma
2) between the neighboring patches of the signal and therefore between the corre-
sponding subspaces containing those patches. This in turn allows to characterize
X 4 as the set of all “realizable” paths in a certain dependency graph derived from
the dictionary D. This point of view allows to describe the model .# using only the
intrinsic properties of the dictionary, in contrast to Theorem 2.

Proposition 14. Let 0 # x € .# and I"amma € p (x) with supp I" = (S, ..., Sp).
Thenfori=1,...,P
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rank [SpDs, — StDs,, | < ISi| + Si41] < 2, (29)
where by convention rank § = —oo.
Proof. x € ./ implies by Lemma 2 that foreveryi = 1,... P
[SzD  — S;D] [ “i } = 0.
Ait1
But

o a;lS;
SgD —StD = |SgDs, — 87Dy, =0,
155 ! ][Oli+1] [5sDs rDs1.] [ai+1|5i+1]

and therefore the matrix [SgpDs, — S7Ds,,,| must be rank-deficient. Note in
particular that the conclusion still holds if one (or both) of the {s;, s;11} is empty.
The preceding result suggests a way to describe all the supports in X' .
Definition 17. Given a dictionary D, we define an abstract directed graph ¥ =
(V, E), with the vertex set
V={G,....iry C{l,...,m}: rankD; _,;, =k <n},

and the edge set
E=1(5,5)c€VxV: rank[SgDs, —SrDs,] <min{n—1,|S1|+ |S2]};.

In particular, @ € V and (9, @) € E with rank [#] := —o0.

Remark 4. Tt might be impossible to compute ¥, ; in practice. However we set this
issue aside for now and only explore the theoretical ramifications of its properties.

Definition 18. The set of all directed paths of length P in ¥p , not including the
self-loop (4,49, ... @), is denoted by G (P).
~———

XP

Definition 19. A path . € % (P) is called realizable if dimkerA s> > 0. The set
of all realizable paths in 6% (P) is denoted by Z« (P).
Thus we have the following result.

Theorem 9. Suppose 0 # x € M. Then
1. Every representation I’ = (ozi)f:l € p(x) satisfies supp I’ € Gy (P), and

therefore

Xu SRy (P). (30)
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2. The model M can be characterized “intrinsically” by the dictionary as follows:

M = U kerA. (31)

S E€R g (P)

Proof. Let suppI” = (S1,...,S8p) with §; = suppe; if ; # 0, and S; = @ if
a; = 0. Then by Proposition 14, we must have that

rank [SpDs, — StDs., | < ISi| + |Sis1] < 2.

Furthermore, since I" € p(x) we must have that Dy, is full rank for each i =
1,...,P. Thus (S;,Sit+1) € 9y, and so supp " € Zg (P). Since by assumption
supp I € ¥ 4, this proves (30).

To show (31), notice that if supp I'amma € %« (P), then for every x €
ker Agupp > We have Rix = Pg,R;x, i.e., Rix = Da; for some «; with suppo; C §;.
Clearly in this case |supp «;| < s and therefore x € .#. The other direction of (31)
follows immediately from the definitions. a

Definition 20. The dictionary D is called “(s, P)-good” if
| % (P)| > 0.

Theorem 10. The set of “(s, P)-good” dictionaries has measure zero in the space
of all n X m matrices.

Proof. Every low-rank condition defines a finite number of algebraic equations on
the entries of D (given by the vanishing of all the 2s x 2s minors of [SBDSi STDSj]).
Since the number of possible graphs is finite (given fixed n, m and s), the resulting
solution set is a finite union of semi-algebraic sets of low dimension and hence has
measure zero. a

Constructing “Good” Dictionaries

The above considerations suggest that the good dictionaries are hard to come by;
here we provide an example of an explicit construction.

We start by defining an abstract graph ¢ with some desirable properties, and
subsequently look for a nontrivial realization D of the graph, so that in addition
Hg # 0.

In this context, we would want ¢ to contain sufficiently many different long
cycles, which would correspond to long signals and a rich resulting model ..
In contrast with the models from Subsection 4.2 (where all the graphs consist of
a single cycle), one therefore should allow for some branching mechanism. An
example of a possible ¢ is given in Figure 13 on page 46. Notice that due to the
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-

Fig. 13 A possible dependency graph ¢ with m = 10. In this example, |6 (70)| = 37614.

structure of ¢, there are many possible paths in % (P). In fact, a direct search
algorithm yields |6 (70)| = 37614.

Every edge in ¢ corresponds to a conditions of the form (29) imposed on the
entries of D. As discussed in Theorem 10, this in turn translates to a set of algebraic
equations. So the natural idea would be to write out the large system of such
equations and look for a solution over the field R by well-known algorithms in
numerical algebraic geometry [5]. However, this approach is highly impractical
because these algorithms have (single or double) exponential running time. We
consequently propose a simplified, more direct approach to the problem.

In detail, we replace the low-rank conditions (29) with more explicit and
restrictive ones below.

Assumptions(*)  For each (S,-,Sj) € ¢ we have |S;| = \Sj| = k. We require that
spanSpDs, = spanSyDs; = A;; with dim A;; = k. Thus there exists a non-
singular transfer matrix C;; € R such that

SBDS[ = C[JSTDSj. (32)

In other words, every column in SgpDs, must be a specific linear combination of the
columns in StDs;. This is much more restrictive than the low-rank condition, but
on the other hand, given the matrix C;, it defines a set of linear constraints on D.
To summarize, the final algorithm is presented in Algorithm 5. In general, nothing
guarantees that for a particular choice of ¢ and the transfer matrices, there is a
nontrivial solution D; however, in practice we do find such solutions. For example,
taking the graph from Figure 13 on page 46 and augmenting it with the matrices
C;j (scalars in this case), we obtain a solution over R® which is shown in Figure 14
on page 47. Notice that while the resulting dictionary has a Hankel-type structure
similar to what we have seen previously, the additional dependencies between the
atoms produce a rich signal space structure, as we shall demonstrate in the following
section.

Algorithm 5 Finding a realization D of the graph ¢

1. Input: a graph ¢ satisfying the Assumptions(*) above, and the dimension n of the realization
space R".

2. Augment the edges of ¢ with arbitrary nonsingular transfer matrices C;;.

Construct the system of linear equations given by (32).

4. Find a nonzero D solving the system above over R”".

b
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Fig. 14 A realization
D € R0 of & from Figure
13 on page 46.

Generating Signals

Now suppose the graph ¢ is known (or can be easily constructed). Then this gives
a simple procedure to generate signals from ./, presented in Algorithm 6.

Algorithm 6 Constructing a signal from .# via ¢

1. Construct a path . € % (P).
2. Construct the matrix A .
3. Find a nonzero vector in kerA o .

Let us demonstrate this on the example in Figure 13 on page 46 and Figure 14 on
page 47. Not all paths in @ are realizable, but it turns out that in this example we
have |Z« (70)| = 17160. Three different signals and their supports . are shown
in Figure 15 on page 48. As can be seen from these examples, the resulting model
A is indeed much richer than the signature-type construction from Subsection 4.2.

An interesting question arises: given .’ € % (P), can we say something about
dimker A o ? In particular, when is it strictly positive (i.e., when ./ € Z« (P)?)
While in general the question seems to be difficult, in some special cases this number
can be estimated using only the properties of the local connections (S;, S;+1), by
essentially counting the additional “degrees of freedom” when moving from patch i
to patch i + 1. To this effect, we prove two results.

Proposition 15. For every . € %y (P), we have
dimkerA y» = dimkerMiy).

Proof. Notice that

kerdy = (DS Ty, M T = 0f = im (D], ).
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and therefore dimkerA o < dimker Mfky). Furthermore, the map D(G‘5ﬂ)|ker e is

injective, because if D(Gy)Fy = 0and Mfky)l"y = 0, we must have that Dg,o;|s, =
0 and, since Dy, has full rank, also «; = 0. The conclusion follows. a

Proposition 16. Assume that the model satisfies Assumptions(*) above. Then for
every . € Ay (P)

dimkerA o < k.

Proof. The idea is to construct a spanning set for kerM,(.;y) and invoke Proposi-
tion 15. Let us relabel the nodes along . tobe 1, 2, .. ., P. Starting from an arbitrary
ap with support |S;| = k, we use (32) to obtain, for i = 1,2,...,P — 1, a formula
for the next portion of the global representation vector I"amma

dip1 = Cj ik 0 (33)

This gives a set A consisting of overall k linearly independent vectors I"amma; with
supp I; = .. It may happen that equation (33) is not satisfied for i = P. However,
every I” with supp I’ = . and Mﬁy)Fammay = 0 must belong to span A, and
therefore

dim keerky) < dimspan A = k.

a

We believe that Proposition 16 can be extended to more general graphs, not

necessarily satisfying Assumptions(*). In particular, the following estimate appears
to hold for a general model .# and .¥ € %« (P):

dimkerA s < [$1]+ Y (1Sit1] — rank [SgDs, SrDs,,,]) -

2

We leave the rigorous proof of this result to a future work.

Further Remarks

While the model presented in this section is the hardest to analyze theoretically,
even in the restricted case of Assumptions(*) (when does a nontrivial realization of
a given ¢ exist? How does the answer depend on n? When Zy (P) # 0? etc?), we
hope that this construction will be most useful in applications such as denoising of
natural signals.
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