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GEOMETRY AND SINGULARITIES OF THE PRONY MAPPING

DMITRY BATENKOV AND YOSEF YOMDIN

Abstract. The Prony mapping provides the global solution of the Prony system of equations

Σni=1Aix
k
i = mk, k = 0, 1, . . . , 2n− 1.

This system appears in numerous theoretical and applied problems arising in Signal Re-
construction. The simplest example is the problem of reconstruction of linear combina-
tion of δ-functions of the form g(x) =

∑n
i=1

aiδ(x − xi), with the unknown parameters
ai, xi, i = 1, . . . , n, from the “moment measurements” mk =

´
xkg(x)dx.

The global solution of the Prony system, i.e., the inversion of the Prony mapping, encoun-
ters several types of singularities. One of the most important ones is a collision of some of
the points xi. The investigation of this type of singularities has been started in [21] where the
role of finite differences was demonstrated.

In the present paper we study this and other types of singularities of the Prony mapping,
and describe its global geometry. We show, in particular, close connections of the Prony
mapping with the “Vieta mapping” expressing the coefficients of a polynomial through its
roots, and with hyperbolic polynomials and “Vandermonde mapping” studied by V. Arnold.

1. Introduction

Prony system appears as we try to solve a very simple “algebraic signal reconstruction” prob-
lem of the following form: assume that the signal F (x) is known to be a linear combination of
shifted δ-functions:

F (x) =
d∑
j=1

ajδ (x− xj) . (1.1)

We shall use as measurements the polynomial moments:

mk = mk (F ) =

ˆ
xkF (x) dx. (1.2)

After substituting F into the integral defining mk we get

mk(F ) =

ˆ
xk

d∑
j=1

ajδ(x− xj) dx =
d∑
j=1

ajx
k
j .

Considering aj and xj as unknowns, we obtain equations

mk (F ) =
d∑
j=1

ajx
k
j , k = 0, 1, . . . . (1.3)

2000 Mathematics Subject Classification. 94A12 62J02, 14P10, 42C99.
Key words and phrases. Singularities, Signal acquisition, Non-linear models, Moments inversion.
This research is supported by the Adams Fellowship Program of the Israel Academy of Sciences and Human-

ities, ISF grant 264/09 and the Minerva Foundation.

http://dx.doi.org/10.5427/jsing.2014.10a


2 DMITRY BATENKOV AND YOSEF YOMDIN

This infinite set of equations (or its part, for k = 0, 1, . . . , 2d− 1), is called Prony system. It can
be traced at least to R. de Prony (1795, [19]) and it is used in a wide variety of theoretical and
applied fields. See [2] for an extensive bibligoraphy on the Prony method.

In writing Prony system (1.3) we have assumed that all the nodes x1, . . . , xd are pairwise
different. However, as the left-hand side µ = (m0, . . . ,m2d−1) of (1.3) is provided by the actual
measurements of the signal F , we cannot guarantee a priori, that this condition is satisfied for
the solution. Moreover, we shall see below that multiple nodes may naturally appear in the
solution process. In order to incorporate possible collisions of the nodes, we consider “confluent
Prony systems”.

Assume that the signal F (x) is a linear combination of shifted δ-functions and their derivatives:

F (x) =
s∑
j=1

dj−1∑
`=0

aj,`δ
(`) (x− xj) . (1.4)

Definition 1.1. For F (x) as above, the vector D (F )
def
= (d1, . . . , ds) is the multiplicity vector

of F , s = s (F ) is the size of its support, T (F )
def
= (x1, . . . , xs), and rank (F )

def
=
∑s
j=1 dj is its

rank. For avoiding ambiguity in these definitions, it is always understood that aj,dj−1 6= 0 for
all j = 1, . . . , s (i.e. dj is the maximal index for which aj,dj−1 6= 0).

For the moments mk = mk(F ) =
´
xkF (x) dx we now get

mk =
s∑
j=1

dj−1∑
`=0

aj,`
k!

(k − `)!
xk−`j .

Considering xi and aj,` as unknowns, we obtain a system of equations

s∑
j=1

dj−1∑
`=0

k!

(k − `)!
aj,`x

k−`
j = mk, k = 0, 1, . . . , 2d− 1, (1.5)

which is called a confluent Prony system of order d with the multiplicity vector D = (d1, . . . , ds).
The original Prony system (1.3) is a special case of the confluent one, with D being the vector
(1, . . . , 1) of length d.

The system (1.5) arises also in the problem of reconstructing a planar polygon P (or even an
arbitrary semi-analytic quadrature domain) from its moments

mk(χP ) =

¨
R2

zkχP dx d y, z = x+ ıy,

where χP is the characteristic function of the domain P ⊂ R2. This problem is important in
many areas of science and engineering [11]. The above yields the confluent Prony system

mk =
s∑
j=1

dj−1∑
i=0

ci,jk(k − 1) · · · (k − i+ 1)zk−ij , ci,j ∈ C, zj ∈ C \ {0} .

Definition 1.2. For a given multiplicity vector D = (d1, . . . , ds), its order is
∑s
j=1 dj .

As we shall see below, if we start with the measurements µ(F ) = µ = (m0, . . . ,m2d−1), then
a natural setting of the problem of solving the Prony system is the following:

Problem 1.3 (Prony problem of order d). Given the measurements

µ = (m0, . . . ,m2d−1) ∈ C2d
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in the right hand side of (1.5), find the multiplicity vector D = (d1, . . . , ds) of order

r =
s∑
j=1

dj ≤ d,

and find the unknowns xj and aj,`, which solve the corresponding confluent Prony system (1.5)
with the multiplicity vector D (hence, with solution of rank r).

It is extremely important in practice to have a stable method of inversion. Many research
efforts are devoted to this task (see e.g. [3, 7, 10, 17, 18, 20] and references therein). A basic
question here is the following.

Problem 1.4 (Noisy Prony problem). Given the noisy measurements

µ̃ = (m̃0, . . . , m̃2d−1) ∈ C2d

and an estimate of the error |m̃k −mk| ≤ εk, solve Problem 1.3 so as to minimize the recon-
struction error.

In this paper we study the global setting of the Prony problem, stressing its algebraic structure.
In Section 2 the space where the solution is to be found (Prony space) is described. It turns out
to be a vector bundle over the space of the nodes x1, . . . , xd. We define also three mappings:
“Prony”, “Taylor”, and “Stieltjes” ones, which capture the essential features of the Prony problem
and of its solution process.

In Section 3 we investigate solvability conditions for the Prony problem. The answer leads
naturally to a stratification of the space of the right-hand sides, according to the rank of the
associated Hankel-type matrix and its minors. The behavior of the solutions near various strata
turns out to be highly nontrivial, and we present some initial results in the description of the
corresponding singularities.

In Section 4, we study the multiplicity-restricted Prony problem, fixing the collision pattern
of the solution, and derive simple bounds for the stability of the solution via factorization of the
Jacobian determinant of the corresponding Prony map.

In Section 5 we consider the rank-restricted Prony problem, effectively reducing the dimension
to 2r instead of 2d, where r is precisely the rank of the associated Hankel-type matrix. In this
formulation, the Prony problem is solvable in a small neighborhood of the exact measurement
vector.

In Section 6 we study one of the most important singularities in the Prony problem: collision
of some of the points xi. The investigation of this type of singularities has been started in [21]
where the role of finite differences was demonstrated. In the present paper we introduce global
bases of finite differences, study their properties, and prove that using such bases we can resolve
in a robust way at least the linear part of the Prony problem at and near colliding configurations
of the nodes.

In Section 7 we discuss close connections of the Prony problem with hyperbolic polynomials
and “Vandermonde mapping” studied by V.I.Arnold in [1] and by V.P.Kostov in [13, 14, 15], and
with “Vieta mapping” expressing the coefficients of a polynomial through its roots. We believe
that questions arising in theoretical study of Prony problem and in its practical applications
justify further investigation of these connections, as well as further applications of Singularity
Theory.

Finally, in Appendix A we describe a solution method for the Prony system based on Padé
approximation.
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2. Prony, Stieltjes and Taylor Mappings

In this section we define “Prony”, “Taylor”, and “Stieltjes” mappings, which capture some
essential features of the Prony problem and of its solution process. The main idea behind
the spaces and mappings introduced in this section is the following: associate to the signal
F (x) =

∑d
i=1 aiδ(x − xi) the rational function R(z) =

∑d
i=1

ai
z−xi . (In fact, R is the Stieltjes

integral transform of F ). The functions R obtained in this way can be written as R(z) = P (z)
Q(z)

with degP ≤ degQ− 1, and they satisfy R(∞) = 0. Write R as

R(z) =
d∑
i=1

ai
z(1− xi/z)

.

Developing the summands into geometric progressions we conclude that R(z) =
∑∞
k=0mk( 1

z )k+1,
with

mk =
d∑
i=1

aix
k
i ,

so the moment measurements mk in the right hand side of the Prony system (1.3) are exactly
the Taylor coefficients of R(z). We shall see below that this correspondence reduces solution of
the Prony system to an appropriate Padé approximation problem.

Definition 2.1. For each w = (x1, . . . , xd) ∈ Cd, let s = s (w) be the number of distinct
coordinates τj , j = 1, . . . , s, and denote T (w) = (τ1, . . . , τs). The multiplicity vector is

D = D (w) = (d1, . . . , ds) ,

where dj is the number of times the value τj appears in {x1, . . . , xd} . The order of the values in
T (w) is defined by their order of appearance in w.

Example 2.2. For w = (3, 1, 2, 1, 0, 3, 2), we have

s (w) = 4, T (w) = (3, 1, 2, 0) , and D (w) = (2, 2, 2, 1) .

Remark 2.3. Note the slight abuse of notations between Definition 1.1 and Definition 2.1. Note
also that the order of D (w) equals to d for all w ∈ Cd.

Definition 2.4. For each w ∈ Cd, let s = s (w) , T (w) = (τ1, . . . , τs) and D (w) = (d1, . . . , ds)
be as in Definition 2.1.

(1) Vw is the vector space of dimension d containing the linear combinations

g =
s∑
j=1

dj−1∑
`=0

γj,`δ
(`) (x− τj) (2.1)

of δ-functions and their derivatives at the points of T (w). The “standard basis” of Vw is
given by the distributions

δj,` = δ(`) (x− τj) , j = 1, . . . , s (w) ; ` = 0, . . . , dj − 1. (2.2)

(2) Ww is the vector space of dimension d of all the rational functions with poles T (w) and
multiplicities D (w), vanishing at ∞ :

R (z) =
P (z)

Q (z)
, Q (z) =

s∏
j=1

(z − τj)dj , degP (z) < degQ 6 d.
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The “standard basis” of Ww is given by the elementary fractions

Rj,` =
1

(z − τj)`
, j = 1, . . . , s; ` = 1, . . . , dj .

Now we are ready to formally define the Prony space Pd and the Stieltjes space Sd as certain
(trivial) vector bundles over Cd.

Definition 2.5. The Prony space Pd is the vector bundle over Cd, consisting of all the pairs

(w, g) : w ∈ Cd, g ∈ Vw.
The topology on Pd is induced by the natural embedding Pd ⊂ Cd ×D, where D is the space of
distributions on C with its standard topology.

Definition 2.6. The Stieltjes space Sd is the vector bundle over Cd, consisting of all the pairs

(w, γ) : w ∈ Cd, γ ∈Ww.

The topology on Sd is induced by the natural embedding Sd ⊂ Cd ×R, where R is the space of
complex rational functions with its standard topology.

Definition 2.7. The Stieltjes mapping SM : Pd → Sd is defined by the Stieltjes integral
transform: for (w, g) ∈ Pd

SM ((w, g)) = (w, γ) , γ (z) =

ˆ ∞
−∞

g (x) dx

z − x
.

Sometimes we abuse notation and write for short SM (g) = γ, with the understanding that SM
is also a map SM : Vw →Ww for each w ∈ Cd.

The following fact is immediate consequence of the above definitions.

Proposition 2.8. SM is a linear isomorphism of the bundles Pd and Sd (for each w ∈ Cd, SM
is a linear isomorphism of the vector spaces Vw and Ww). In the standard bases of Vw and Ww,
the map SM is diagonal, satisfying

SM (δj,`) = (−1)
`
`!Rj,` (z) .

Furthermore, for any (w, g) ∈ Pd

SM (g) =
P (z)

Q (z)︸ ︷︷ ︸
irreducible

, degP < degQ = rank (g) 6 d. (2.3)

Definition 2.9. The Taylor space Td is the space of complex Taylor polynomials at infinity of
degree 2d − 1 of the form

∑2d−1
k=0 mk( 1

z )k+1. We shall identify Td with the complex space C2d

with the coordinates m0, . . . ,m2d−1.

Definition 2.10. The Taylor mapping TM : Sd → Td is defined by the truncated Taylor
development at infinity:

TM ((w, γ)) =
2d−1∑
k=0

αk

Å
1

z

ãk+1

, where γ (z) =
∞∑
k=0

αk

Å
1

z

ãk+1

.
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We identify TM ((w, γ)) as above with (α0, . . . , α2d−1) ∈ C2d. Sometimes we write for short
TM (γ) = (α0, . . . , α2d−1).

Finally, we define the Prony mapping PM which encodes the Prony problem.

Definition 2.11. The Prony mapping PM : Pd → C2d for (w, g) ∈ Pd is defined as follows:

PM ((w, g)) = (m0, . . . ,m2d−1) ∈ C2d, mk = mk (g) =

ˆ
xkg (x) dx.

By the above definitions, we have

PM = TM ◦ SM. (2.4)

Solving the Prony problem for a given right-hand side (m0, . . . ,m2d−1) is therefore equivalent to
inverting the Prony mapping PM . As we shall elaborate in the subsequent section, the identity
(2.4) allows us to split this problem into two parts: inversion of TM , which is, essentially, the
Padé approximation problem, and inversion of SM , which is, essentially, the decomposition of
a given rational function into the sum of elementary fractions.

3. Solvability of the Prony problem

3.1. General condition for solvability. In this section we provde a necessary and sufficient
condition for the Prony problem to have a solution (which is unique, as it turns out by Proposition
3.2). As mentioned in the end of the previous section, our method is based on inverting (2.4)
and thus relies on the solution of the corresponding (diagonal) Padé approximation problem [4].

Problem 3.1 (Diagonal Padé approximation problem). Given µ = (m0, . . . ,m2d−1) ∈ C2d, find
a rational function Rd(z) = P (z)

Q(z) ∈ Sd with degP < degQ 6 d, such that the first 2d Taylor

coefficients at infinity of Rd(z) are {mk}2d−1
k=0 .

Proposition 3.2. If a solution to Problem 3.1 exists, it is unique.

Proof. Writing R (z) = P (z)
Q(z) , R1 (z) = P1(z)

Q1(z) , with degP < degQ 6 d and degP1 < degQ1 6 d,
we get

R−R1 =
PQ1 − P1Q

QQ1
,

and this function, if nonzero, can have a zero of order at most 2d− 1 at infinity. �

Let us summarize the above discussion with the following statement.

Proposition 3.3. The tuple{
s, D = (d1, . . . , ds), r =

s∑
j=1

dj ≤ d, X = {xj}sj=1 , A = {aj,`}j=1,...,s; `=0,...,dj−1

}
is a (unique, up to a permutation of the nodes {xj}) solution to Problem 1.3 with right-hand
side

µ = (m0, . . . ,m2d−1) ∈ C2d

if and only if the rational function

RD,X,A (z) =
s∑
j=1

dj∑
`=1

(−1)
`−1

(`− 1)!
aj,`−1

(z − xj)`
=

2d−1∑
k=0

mk

zk+1
+O

(
z−2d−1

)
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is a (unique) solution to Problem 3.1 with input µ. In that case,

RD,X,A (z) =

ˆ ∞
−∞

g (x) dx

z − x
where g (x) =

s∑
j=1

dj−1∑
`=0

aj,`δ
(`) (x− xj) ,

i.e., RD,X,A (z) is the Stieltjes transform of g (x).

Proof. This follows from the definitions of Section 2, (2.4), Proposition 3.2 and the fact that the
problem of representing a given rational function as a sum of elementary fractions of the specified
form (i.e., inverting SM) is always uniquely solvable up to a permutation of the poles. �

The next result provides necessary and sufficient conditions for the solvability of Problem 3.1.
It summarizes some well-known facts in the theory of Padé approximation, related to “normal
indices” (see, for instance, [4]). However, these facts are not usually formulated in the literature
on Padé approximation in the form we need in relation to the Prony problem. Consequently, we
give a detailed proof of this result in Appendix A. This proof contains, in particular, some facts
which are important for understanding the solvability issues of the Prony problem.

Definition 3.4. Given a vector µ = (m0, . . . ,m2d−1), let M̃d denote the d × (d+ 1) Hankel
matrix

M̃d =


m0 m1 m2 . . . md

m1 m2 m3 . . . md+1

. .. . .. . .. . .. . ..

md−1 md md+1 . . . m2d−1

 . (3.1)

For each e 6 d, denote by M̃e the e × (e+ 1) submatrix of M̃d formed by the first e rows and
e+ 1 columns, and let Me denote the corresponding square matrix.

Theorem 3.5. Let µ = (m0, . . . ,m2d−1) be given, and let r 6 d be the rank of the Hankel matrix
M̃d as in (3.1). Then Problem 3.1 is solvable for the input µ if and only if the upper left minor
|Mr| of M̃d is non-zero.

As an immediate consequence of Theorem 3.5 and Proposition 3.3, we obtain the following
result.

Theorem 3.6. Let µ = (m0, . . . ,m2d−1) be given, and let r 6 d be the rank of the Hankel matrix
M̃d as in (3.1). Then Problem 1.3 with input µ is solvable if and only if the upper left minor
|Mr| of M̃d is non-zero. The solution, if it exists, is unique, up to a permutation of the nodes
{xj}. The multiplicity vector D = (d1, . . . , ds), of order

∑s
j=1 dj = r, of the resulting confluent

Prony system of rank r is the multiplicity vector of the poles of the rational function RD,X,A (z),
solving the corresponding Padé problem.

As a corollary we get a complete description of the right-hand side data µ ∈ C2d for which
the Prony problem is solvable (unsolvable). Define for r = 1, . . . , d sets Σr ⊂ C2d (respectively,
Σ′r ⊂ C2d) consisting of µ ∈ C2d for which the rank of M̃d = r and |Mr| 6= 0 (respectively,
|Mr| = 0). The set Σr is a difference Σr = Σ1

r \ Σ2
r of two algebraic sets: Σ1

r is defined by
vanishing of all the s× s minors of M̃d, r < s ≤ d, while Σ2

r is defined by vanishing of |Mr|. In
turn, Σ′r = Σ

′1
r \Σ

′2
r , with Σ

′1
r = Σ1

r ∩Σ2
r and Σ

′2
r defined by vanishing of all the r× r minors of

M̃d. The union Σr ∪ Σ′r consists of all µ for which the rank of M̃d = r, which is Σ1
r \ Σ

′2
r .

Corollary 3.7. The set Σ (respectively, Σ′) of µ ∈ C2d for which the Prony problem is solvable
(respectively, unsolvable) is the union Σ = ∪dr=1Σr (respectively, Σ′ = ∪dr=1Σ′r). In particular,
Σ′ ⊂ {µ ∈ C2d,detMd = 0}.
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So for a generic right hand side µ we have |Md| 6= 0, and the Prony problem is solvable. On
the algebraic hypersurface of µ for which |Md| = 0, the Prony problem is solvable if |Md−1| 6= 0,
etc.

Let us now consider some examples.

Example 3.8. Let us fix d = 1, 2, . . . . Consider µ = (m0, . . . ,m2d−1) ∈ C2d, the right hand
sides of the Prony problem, to be of the form µ = µ` = (δk`) = (0, . . . , 0, 1︸︷︷︸

position `+1

, 0, . . . , 0),

with all the mk = 0 besides m` = 1, ` = 0, . . . , 2d− 1, and let M̃ `
d be the corresponding matrix.

Proposition 3.9. The rank of M̃ `
d is equal to `+ 1 for ` ≤ d− 1, and it is equal to 2d− ` for

` ≥ d. The corresponding Prony problem is solvable for ` ≤ d− 1, and it is unsolvable for ` ≥ d.

Proof. For d = 5 and ` = 2, 4, 5, 9, the corresponding matrices M̃d
` are as follows.

M̃2
5 =


0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , M̃4
5 =


0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0

 , (solvable)

M̃5
5 =


0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0

 , M̃9
5 =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1

 . (unsolvable)

In general, the matrices M̃ `
d have the same pattern as in the special cases above, so their rank is

`+ 1 for ` 6 d− 1, and 2d− ` for ` > d, as stated above. Application of Theorem 3.6 completes
the proof. �

In fact, µ` is a moment sequence of

F (x) =
1

`!
δ(`) (x) ,

and this signal belongs to Pd if and only if ` 6 d− 1. In notations of Corollary 3.7 we have

µ` ∈ Σ`+1, ` 6 d− 1,

µ` ∈ Σ′2d−`, ` > d.

It is easy to provide various modifications of the above example. In particular, for

µ = µ̃` = (0, . . . , 0, 1, 1, . . . , 1) ,

the result of Proposition 3.9 remains verbally true.

Example 3.10. Another example is provided by µ`1,`2 , with all the mk = 0 besides

m`1 = 1, m`2 = 1, 0 ≤ `1 < d ≤ `2 ≤ 2d− 1.

For `1 < `2−d+1 the rank of the corresponding matrix M̃d is r = 2d+`1−`2 +1 while |Mr| = 0,
so the Prony problem for such µ`1,`2 is unsolvable. For d = 5 and `1 = 2, `2 = 8 the matrix is
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as follows:

M̃
(2,8)
5 =


0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

 .
3.2. Near-singular inversion. The behavior of the inversion of the Prony mapping near the
unsolvability stratum Σ′ and near the strata where the rank of M̃d drops, turns out to be pretty
complicated. In particular, in the first case at least one of the nodes tends to infinity. In the
second case, depending on the way the right-hand side µ approaches the lower rank strata, the
nodes may remain bounded, or some of them may tend to infinity. In this section we provide
one initial result in this direction, as well as some examples. We believe that a comprehensive
description of the inversion of the Prony mapping near Σ′ and near the lower rank strata is
important both in theoretical study and in applications of Prony-like systems, and consider it
to be an important direction for future research.

Theorem 3.11. As the right-hand side µ ∈ C2d \ Σ′ approaches a finite point µ0 ∈ Σ′, at least
one of the nodes x1, . . . , xd in the solution tends to infinity.

Proof. By assumptions, the components m0, . . . ,m2d−1 of the right-hand side

µ = (m0, . . . ,m2d−1) ∈ C2d

remain bounded as µ→ µ0. By Theorem 6.17, the finite differences coordinates of the solution
PM−1(µ) remain bounded as well. Now, if all the nodes are also bounded, by compactness we
conclude that PM−1(µ) → ω ∈ Pd. By continuity in the distribution space (Lemma 6.9) we
have PM(ω) = µ0. Hence the Prony problem with the right-hand side µ0 has a solution ω ∈ Pd,
in contradiction with the assumption that µ0 ∈ Σ′. �

Example 3.12. Let us consider an example: d = 2 and µ0 = (0, 0, 1, 0). Here the rank ` of M̃2

is 2, and |M2| = 0, so by Theorem 3.6 we have µ0 ∈ Σ′2 ⊂ Σ′. Consider now a perturbation
µ(ε) = (0, ε, 1, 0) of µ0. For ε 6= 0 we have µ(ε) ∈ Σ2 ⊂ Σ, and the Prony system is solvable for
µε. Let us write an explicit solution: the coefficients c0, c1 of the polynomial Q(z) = c0 +c1z+z2

we find from the system (A.??): ï
0 ε
ε 1

ò ï
c0
c1

ò
=

ï
−1
0

ò
,

whose solution is c1 = − 1
ε , c0 = 1

ε2 . Hence the denominator Q(z) of R(z) is Q(z) = 1
ε2 −

1
ε z+z2,

and its roots are x1 = 1+ı
√

3
2ε , x2 = 1−ı

√
3

2ε . The coefficients b0, b1 of the numerator P (z) = b0+b1z
we find from (A.?): ï

0 0
0 ε

ò ï
− 1
ε

1

ò
=

ï
b1
b0

ò
,

i.e., b1 = 0, b0 = ε. Thus the solution of the associated Padé problem is

R(z) =
P (z)

Q(z)
=

ε

(z − x1)(z − x2)
=

ε2

ı
√

3

1

(z − x1)
− ε2

ı
√

3

1

(z − x2)
.

Finally, the (unique up to a permutation) solution of the Prony problem for µε is

a1 =
ε2

ı
√

3
, a2 = − ε2

ı
√

3
, x1 =

1 + ı
√

3

2ε
, x2 =

1− ı
√

3

2ε
.

As ε tends to zero, the nodes x1, x2 tend to infinity while the coefficients a1, a2 tend to zero.
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As it was shown above, for a given µ ∈ Σ (say, with pairwise different nodes) the rank of the
matrix M̃d is equal to the number of the nodes in the solution for which the corresponding δ-
function enters with a non-zero coefficients. So µ approaches a certain µ0 belonging to a stratum
of a lower rank of M̃d if and only if some of the coefficients aj in the solution tend to zero. We
do not analyze all the possible scenarios of such a degeneration, noticing just that if µ0 ∈ Σ′,
i.e., the Prony problem is unsolvable for µ0, then Theorem 3.11 remains true, with essentially
the same proof. So at least one of the nodes, say, xj , escapes to infinity. Moreover, one can show
that ajx2d−1

j cannot tend to zero - otherwise the remaining linear combination of δ-functions
would provide a solution for µ0.

If µ0 ∈ Σ, i.e., the Prony problem is solvable for µ0, all the nodes may remain bounded, or
some xj may escape to infinity, but in such a way that ajx2d−1

j tends to zero.

4. Multiplicity-restricted Prony problem

Consider Problem 1.4 at some point µ0 ∈ Σ. By definition, µ0 ∈ Σr0 for some r0 ≤ d. Let
µ0 = PM ((w0, g0)) for some (w0, g0) ∈ Pd. Assume for a moment that the multiplicity vector
D0 = D (g0) = (d1, . . . ds0),

∑s0
j=1 dj = r0, has a non-trivial collision pattern, i.e., dj > 1 for at

least one j = 1, . . . , s0. It means, in turn, that the function RD0,X,A (z) has a pole of multiplicity
dj . Evidently, there exists an arbitrarily small perturbation µ̃ of µ0 for which this multiple pole
becomes a cluster of single poles, thereby changing the multiplicity vector to some D′ 6= D0.
While we address this problem in Section 6 via the bases of divided differences, in this section
we consider a “multiplicity-restricted” Prony problem.

Definition 4.1. Let x = (x1, . . . , xs) ∈ Cs and D = (d1, . . . , ds) with d =
∑s
j=1 dj be given.

The d× d confluent Vandermonde matrix is

V = V (x, D) = V (x1, d1, . . . , xs, ds) =


v1,0 v2,0 . . . vs,0

v1,1 v2,1 . . . vs,1

. . .
v1,d−1 v2,d−1 . . . vs,d−1

 (4.1)

where the symbol vj,k denotes the following 1× dj row vector

vj,k
def
=
î
xkj , kxk−1

j , . . . , k (k − 1) · · · (k − dj)x
k−dj+1
j

ó
.

Proposition 4.2. The matrix V defines the linear part of the confluent Prony system (1.5) in
the standard basis for Vw, namely,

V (x1, d1, . . . , xs, ds)



a1,0

...
a1,d1−1

...

as,ds−1


=



m0

m1

...

md−1

 . (4.2)

Definition 4.3. Let PM (w0, g0) = µ0 ∈ Σr0 with D (g0) = D0 and s (g0) = s0. Let PD0 denote
the following subbundle of Pd of dimension s0 + r0:

PD0
= {(w, g) ∈ Pd : D (g) = D0} .

The multiplicity-restricted Prony mapping PM∗D0
: PD0 → Cs0+r0 is the composition

PM∗D0
= π ◦ PM �PD0

,

where π : C2d → Cs0+r0 is the projection map on the first s0 + r0 coordinates.
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Inverting this PM∗D0
represents the solution of the confluent Prony system (1.5) with fixed

structure D0 from the first k = 0, 1, . . . , s0 + r0 − 1 measurements.

Theorem 4.4 ([7]). Let µ∗0 = PM∗D0
((w0, g0)) ∈ Cs0+r0 with the unperturbed solution

g0 =

s0∑
j=1

dj−1∑
`=0

aj,`δ
(`) (x− τj) .

In a small neighborhood of (w0, g0) ∈ PD0
, the map PM∗D0

is invertible. Consequently, for
small enough ε, the multiplicity-restricted Prony problem with input data µ̃∗ ∈ Cr0+s0 satisfying
‖µ̃∗ − µ∗0‖ ≤ ε has a unique solution. The error in this solution satisfies

|∆aj,`| ≤
2

`!

Å
2

δ

ãs0+r0 Å1

2
+
s0 + r0

δ

ãdj−`Ç
1 +

|aj,`−1|∣∣aj,dj−1

∣∣
å
ε,

|∆τj | ≤
2

dj !

Å
2

δ

ãs0+r0 1∣∣aj,dj−1

∣∣ε,
where δ def

= mini 6=j |τi − τj | (for consistency we take aj,−1 = 0 in the above formula).

Proof outline. The Jacobian of PM∗D0
can be easily computed, and it turns out to be equal to

the product
JPM∗

D0
= V (τ1, d1 + 1, . . . , τs0 , ds0 + 1) diag {Ej}

where V is the confluent Vandermonde matrix (4.1) on the nodes (τ1, . . . , τs0), with multiplicity
vector

D̃0 = (d1 + 1, . . . , ds0 + 1) ,

while E is the (dj + 1)× (dj + 1) block

Ej =


1 0 0 · · · 0
0 1 0 · · · aj,0
...

...
...

. . .
...

0 0 0 · · · aj,dj−1

 .
Since µ0 ∈ Σr, the highest order coefficients aj,dj−1 are nonzero. Furthermore, since all the τj
are distinct, the matrix V is nonsingular. Local invertibility follows. To estimate the norm of
the inverse, use bounds from [6]. �

Remark 4.5. Note that as two nodes collide (δ → 0), the inversion of the multiplicity-restricted
Prony mapping PM∗D0

becomes ill-conditioned proportionally to δ−(s0+r0).

Let us stress that we are not aware of any general method of inverting PM∗D0
, i.e., solving

the multiplicity-restricted confluent Prony problem with the smallest possible number of mea-
surements. As we demonstrate in [5], such a method exists for a very special case of a single
point, i.e., s = 1.

5. Rank-restricted Prony problem

Recall that the Prony problem consists in inverting the Prony mapping PM : Pd → Td. So,
given µ = (m0, . . . ,m2d−1) ∈ Td we are looking for (w, g) ∈ Pd such that

mk(g) =

ˆ
xkg(x)dx = mk,

with k = 0, 1, . . . , 2d− 1. If µ ∈ Σr with r < d, then in fact any neighborhood of µ will contain
points from the non-solvability set Σ′. Indeed, consider the following example.



12 DMITRY BATENKOV AND YOSEF YOMDIN

Example 5.1. Slightly modifying the construction of Example 3.10, consider µ`1,`2,ε ∈ C2d with
all the mk = 0 besides m`1 = 1 and m`2 = ε, such that `2 > `1 + d − 1. For example, if d = 5
and `1 = 2, `2 = 8, the corresponding matrix is

M̃
(2,8,ε)
5 =


0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 ε
0 0 0 0 ε 0

 .
For ε = 0 the Prony problem is solvable, while for any small perturbation ε 6= 0 it becomes
unsolvable. However, if we restrict the whole problem just to d = 3, it remains solvable for any
small perturbation of the input.

We therefore propose to consider the rank-restricted Prony problem analogous to the con-
struction of Section 4, but instead of fixing the multiplicity D (g) we now fix the rank r (recall
Definition 1.1).

Definition 5.2. Denote by Pr the following vector bundle:

Pr = {(w, g) : w ∈ Cr, g ∈ Vw} ,
where Vw is defined exactly as in Definition 2.4, replacing d with r.

Likewise, we define the Stieltjes bundle of order r as follows.

Definition 5.3. Denote by Sr the following vector bundle:

Sr = {(w, γ) : w ∈ Cr, γ ∈Ww} ,
where Ww is defined exactly as in Definition 2.4, replacing d with r.

The Stieltjes mapping acts naturally as a map SM : Pr → Sr with exactly the same definition
as Definition 2.7.

The restricted Taylor mapping TMr : Sr → C2r is, as before, given by the truncated devel-
opment at infinity to the first 2r Taylor coefficients.

Definition 5.4. Let π : C2d → C2r denote the projection operator onto the first 2r coordinates.
Denote Σ∗r

def
= π (Σr). The rank-restricted Prony mapping PM∗r : Pr → Σ∗r is given by by

PM∗r ((w, g)) = (m0, . . . ,m2r−1) , mk = mk (g) =

ˆ
xkg (x) dx.

Remark 5.5. Pr can be embedded in Pd, for example by the map Ξr : Pr → Pd

Ξr : (w, g) ∈ Pr 7−→ (w′, g′) ∈ Pd : w′ =

Ö
x1, . . . , xr, 0, . . . 0︸ ︷︷ ︸

×(d−r)

è
, g′ = g.

With this definition, PM∗r can be represented also as the composition

PM∗r = π ◦ PM ◦ Ξr.

Proposition 5.6. The rank-restricted Prony mapping satisfies

PM∗r = TMr ◦ SM.

Inverting PM∗r represents the solution of the rank-restricted Prony problem. Unlike in the
multiplicity-restricted setting of Section 4, here we allow two or more nodes to collide (thereby
changing the multiplicty vector D (g) of the solution).

The basic fact which makes this formulation useful is the following result.
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Theorem 5.7. Let µ∗0 ∈ Σ∗r. Then in a small neighborhood of µ∗0 ∈ C2r, the Taylor mapping
TMr is continuously invertible.

Proof. This is a direct consequence of the solution method to the Padé approximation problem
described in Appendix A. Indeed, if the rank of M̃r is full, then it remains so in a small neigh-
borhood of the entire space C2r. Therefore, the system (A.??) remains continuously invertible,
producing the coefficients of the denominator Q (z). Consequently, the right-hand side of (A.?)
depends continuously on the moment vector µ∗ = (m0, . . . ,m2r−1) ∈ C2r. Again, since the rank
always remains full, the polynomials P (z) and Q (z) cannot have common roots, and thereby
the solution R = P

Q = TM−1
r (µ∗) depends continuously on µ∗ (in the topology of the space of

rational functions). �

In the next section, we consider the remaining problem: how to invert SM in this setting.

6. Collision singularities and bases of finite differences

6.1. Introduction. Collision singularities occur in Prony systems as some of the nodes xi in the
signal F (x) =

∑d
i=1 aiδ(x−xi) approach one another. This happens for µ near the discriminant

stratum ∆ ⊂ C2d consisting of those (m0, . . . ,m2d−1) for which some of the coordinates {xj} in
the solution collide, i.e., the function RD,X,A (z) has multiple poles (or, nontrivial multiplicity
vector D). As we shall see below, typically, as µ approaches µ0 ∈ ∆, i.e. some of the nodes xi col-
lide, the corresponding coefficients ai tend to infinity. Notice, that all the moments mk = mk(F )
remain bounded. This behavior creates serious difficulties in solving “near-colliding” Prony sys-
tems, both in theoretical and practical settings. Especially demanding problems arise in the
presence of noise. The problem of improvement of resolution in reconstruction of colliding nodes
from noisy measurements appears in a wide range of applications. It is usually called a “super-
resolution problem” and a lot of recent publications are devoted to its investigation in various
mathematical and applied settings. See [8] and references therein for a very partial sample.

Here we continue our study of collision singularities in Prony systems, started in [21]. Our
approach uses bases of finite differences in the Prony space Pr in order to “resolve” the linear
part of collision singularities. In these bases the coefficients do not blow up any more, even as
some of the nodes collide.

Example 6.1. Let r = 2, and consider the signal F = a1δ (x− x1) + a2δ (x− x2) with

x1 = t, x2 = t+ ε,

a1 = −ε−1, a2 = ε−1.

The corresponding Prony system is

(
a1x

k
1 + a2x

k
2 =
)
mk = ktk−1 +

k∑
j=2

Ç
k

j

å
tk−jεj−1

︸ ︷︷ ︸
def
= ρk(t,ε)

, k = 0, 1, 2, 3.

As ε→ 0, the Prony system as above becomes ill-conditioned and the coefficients {aj} blow up,
while the measurements remain bounded. Note that

M̃2 =

ï
0 1 2t+ ρ2 (t, ε)
1 2t+ ρ2 (t, ε) 3t2 + ρ3 (t, ε)

ò
,

therefore rank M̃2 = 2 and |M2| = 1 6= 0, i.e. the Prony problem with input (m0, . . . ,m3)
remains solvable for all ε. However, the standard basis {δ (x− x1) , δ (x− x2)} degenerates, and
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in the limit it is no more a basis. If we represent the solution

Fε (x) = −1

ε
δ (x− t) +

1

ε
δ (x− t− ε)

in the basis

∆1 (x1, x2) = δ (x− x1) ,

∆2 (x1, x2) =
1

x1 − x2
δ (x− x1) +

1

x2 − x1
δ (x− x2) ,

then we have
Fε (x) = 1 ·∆2 (t, t+ ε) ,

i.e., the coefficients in this new basis are just {b1 = 0, b1 = 1}. As ε→ 0, in fact we have

∆2 (t, t+ ε)→ δ′ (x− t) ,

where the convergence is in the topology of the bundle Pr.

Our goal in this section is to generalize the construction of Example 6.1 and [21] to handle
the general case of colliding configurations.

6.2. Divided finite differences. For modern treatment of divided differences, see e.g. [9, 12,
16]. We follow [9] and adopt what has become by now the standard definition.

Definition 6.2. Let an arbitrary sequence of points w = (x1, x2, . . . , ) be given (repetitions
are allowed). The (n-1 )-st divided difference ∆n−1 (w) : Π → C is the linear functional on the
space Π of polynomials in one variable x, associating to each p ∈ Π its (uniquely defined) n-th
coefficient in the Newton form

p (x) =
∞∑
j=1

{
∆j−1 (x1, . . . , xj) p

}
· qj−1,w (x) , qi,w (x)

def
=

i∏
k=1

(x− xk) . (6.1)

Example 6.3. For n = 1, we have ∆0 (x1) p = p (x1), and the 0-th order Newton interpolation
polynomial is the constant

P1 (x) = p (x1) · 1︸︷︷︸
=q0,w(x)

.

Example 6.4. For n = 2 consider two cases.

(1) If x1 6= x2, we have ∆1 (x1, x2) p = p(x2)−p(x1)
x2−x1

, and the first order Newton interpolation
polynomial is

P2 (x) = p (x1) · 1︸︷︷︸
=qo,w(x)

+
p (x2)− p (x1)

x2 − x1
· (x− x1)︸ ︷︷ ︸

=q1,w(x)

.

It can be readily verified that P2 (xk) = p (xk) for k = 1, 2.
(2) If x1 = x2, then ∆1 (x1, x1) p = p′ (x1), and so

P2 (x) = p (x1) + p′ (x1) (x− x1) .

It can be readily verified that P2 (x1) = p (x1) and P ′2 (x1) = p′ (x1).
It turns out that this definition can be extended to all sufficiently smooth functions for which
the interpolation problem is well-defined.
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Definition 6.5 ([9]). For any smooth enough function f , defined at least on x1, . . . , xn, the
divided finite difference ∆n−1 (x1, . . . , xn) f is the n-th coefficient in the Newton form (6.1) of
the Hermite interpolation polynomial Pn, which agrees with f and its derivatives of appropriate
order on x1, . . . , xn :

f (`) (xj) = P (`)
n (xj) : 1 6 j 6 n, 0 6 ` < dj

def
= # {i : xi = xj} . (6.2)

Example 6.6. Consider the rational function depending on a parameter z ∈ C :

fz (x) =
1

z − x
.

The 0th divided difference is ∆0 (x1) f = f (x1) = 1
z−x1

, and the Newton interpolation polyno-
mial is

P1 (x) =
1

z − x1
.

For n = 2 and x1 6= x2, we have ∆1 (x1, x2) = 1
(z−x1)(z−x2) , and

P2 (x) =
1

z − x1
+

x− x1

(z − x1) (z − x2)
,

thus P2 (xk) = f (xk) for k = 1, 2. If x1 = x2 then ∆1 (x1, x1) = f ′z (x1) = 1
(z−x1)2

, and so

P2 (x) =
1

z − x1
+

x− x1

(z − x1)
2 .

Again, P2 (x1) = fz (x1) and P ′2 (x1) = f ′z (x1).

Therefore, each divided difference can be naturally associated with an element of the Prony
space (see Item 5 in Proposition 6.7 and Definition 6.8 below for an accurate statement).

Let us now summarize relevant properties of the functional ∆ which we shall use later on.

Proposition 6.7. For w = (x1, . . . , xn) ∈ Cn, let s (w) , T (w) and D (w) be defined according
to Definition 2.1. Let qn,w (z) =

∏s
j=1 (z − τj)dj be defined as in (6.1).

(1) The functional ∆n−1 (x1, . . . , xn) is a symmetric function of its arguments, i.e., it de-
pends only on the set {x1, . . . , xn} but not on its ordering.

(2) ∆n−1 (x1, . . . , xn) is a continuous function of the vector (x1, . . . , xn). In particular, for
any test function f

lim
(x1,...,xn)→(t1,...,tn)

∆n−1 (x1, . . . , xn) f = ∆n−1 (t1, . . . , tn) f.

(3) ∆ may be computed by the recursive rule

∆n−1 (x1, . . . , xn) f =

{
∆n−2(x2,...,xn)f−∆n−2(x1,...,xn−1)f

xn−x1
x1 6= xn,¶

d
d ξ ∆n−2 (ξ, x2, . . . , xn−1) f

©
|ξ=xn , x1 = xn,

(6.3)

where ∆0 (x1) f = f (x1) .

(4) (Generalization of Example 6.6) Let fz (x) = (z − x)
−1. Then for all z /∈ {x1, . . . , xn}

∆n−1 (x1, . . . , xn) fz =
1

qn,w (z)
. (6.4)

(5) By (6.2), ∆n−1 (x1, . . . , xn) is a linear combination of the functionals

δ(`) (x− τj) , 1 6 j 6 s, 0 6 ` < dj .
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In fact, using (6.4) we obtain the Chakalov’s expansion (see [9])

∆n−1 (x1, . . . , xn) =
s∑
j=1

dj−1∑
`=0

aj,`δ
(`) (x− τj) , (6.5)

where the coefficients {aj,`} are defined by the partial fraction decomposition1

1

qn,w (z)
=

s∑
j=1

dj−1∑
`=0

`!aj,`

(z − τj)`+1
. (6.6)

(6) By (6.5) and (6.6)

∆n−1

Ñ
t, . . . , t︸ ︷︷ ︸
×n

é
=

1

(n− 1)!
δ(n−1) (x− t) . (6.7)

(7) Popoviciu’s refinement lemma [9, Proposition 23]: for every index subsequence

1 6 σ (1) < σ (2) < · · · < σ (k) 6 n,

there exist coefficients α (j) such that

∆k−1
(
xσ(1), . . . , xσ(k)

)
=

σ(k)−k∑
j=σ(1)−1

α (j) ∆k−1 (xj+1, xj+2, . . . , xj+k) . (6.8)

Based on the above, we may now identify ∆ with elements of the bundle Pr.

Definition 6.8. Let w = (x1, . . . , xr) ∈ Cr, and X = {n1, n2, . . . , nα} ⊆ {1, 2, . . . , r} of size
|X| = α be given. Let the elements of X be enumerated in increasing order, i.e.

1 6 n1 < n2 < · · · < nα 6 r.

Denote by wX the vector

wX
def
= (xn1

, xn2
, . . . , xnα) ∈ Cα.

Then we denote
∆X (w)

def
= ∆α−1 (wX) .

We immediately obtain the following result.

Lemma 6.9. For all w ∈ Cr and X ⊆ {1, 2, . . . , r}, we have ∆X (w) ∈ Vw. Moreover, letting
α = |X| we have

SM (∆X (w)) = ∆α−1 (wX)
1

z − x
=

1

qα,wX (z)
. (6.9)

Finally, (w,∆X (w)) is a continuous section of Pr.

1The coefficients
{
aj,`
}

may be readily obtained by the Cauchy residue formula

aj,` =
1

(dj − 1 − `)!
lim
z→τj

(
d

d z

)dj−1−`
ß

(z − τj)
`+1

qn,w (z)

™
.
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6.3. Constructing a basis. The following result is well-known, see e.g. [9, Proposition 35].

Theorem 6.10. Denote Nj = {1, 2, . . . , j} for j = 1, 2, . . . , r. Then for every w ∈ Cr, the
collection {

∆Nj (w)
}r
j=1

is a basis for Vw.

There are various proofs of this statement. Below we show how to construct sets which do
not necessarily remain basis for all w ∈ Cr, but only for w in a small neighborhood of a given
w0 ∈ Cr. Theorem 6.10 will then follow as a special case of this construction.

Informally, if two coordinates xi and xj can collide, then it is necessary to allow them to be
glued by some element of the basis, i.e., we will need ∆X (w) where i, j ∈ X (in Theorem 6.10
all coordinates might be eventually glued into a single point because w is unrestricted.) In order
to make this statement formal, let us introduce a notion of configuration, which is essentially a
partition of the set of indices.

Definition 6.11. A configuration C is a partition of the set Nr = {1, 2, . . . , r} into s = s (C)
disjoint nonempty subsets

tsi=1Xi = Nr, |Xi| = di > 0.

The multiplicity vector of C is
T (C) = (d1, . . . , ds) .

Every configuration defines a continuous family of divided differences as follows.

Definition 6.12. Let a configuration C = {Xj}s(C)j=1 . Enumerate each Xj in increasing order of
its elements

Xj =
¶
nj1 < nj2 < . . . njdj

©
and denote for every m = 1, 2, . . . , dj

Xj,m
def
=
¶
njk : k = 1, 2, . . . ,m

©
.

For every w ∈ Cr, the collection BC (w) ⊂ Vw is defined as follows:

BC (w)
def
=
{

∆Xj,m (w)
}m=1,...,dj

j=1,...,s(C) .

Now we formally define when a partition is “good” with respect to a point w ∈ Cr.

Definition 6.13. The point w = (x1, . . . , xr) ∈ Cr is subordinated to the configuration

C = {Xj}s(C)j=1

if whenever xk = x` for a pair of indices k 6= `, then necessarily k, ` ∈ Xj for some Xj .

Now we are ready to formulate the main result of this section.

Theorem 6.14. For a given w0 ∈ Cr and a configuration C, the collection BC (w0) is a basis
for Vw0

if and only if w0 is subordinated to C. In this case, BC (w) is a continuous family of
bases for Vw in a sufficiently small neighborhood of w0.

Let us first make a technical computation.

Lemma 6.15. For a configuration C and a point w ∈ Cr, consider for every fixed j = 1, . . . , s (C)
the set

Sj
def
=
{

∆Xj,m (w)
}dj
m=1

. (6.10)
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(1) Define for any pair of indices 1 6 k 6 ` 6 dj the index set

Xj,k:`
def
=
¶
njk < njk+1 < · · · < nj`

©
⊆ Xj = Xj,1:dj = Xj,dj .

Then
∆Xj,k:` (w) ∈ spanSj .

(2) For an arbitrary subset Y ⊆ Xj (and not necessarily containing segments of consecutive
indices), we also have

∆Y (w) ∈ spanSj .

Proof. For clarity, we denote yi = xnj
i
and [k : `] = ∆Xj,k:` (w). By (6.3) we have in all cases

(including repeated nodes)

(y` − yk) [k : `] = [k + 1 : `]− [k : `− 1] . (6.11)

The proof of the first statement is by backward induction on n = ` − k. We start from
n = dj , and obviously [1 : dj ] ∈ Sj . In addition, by definition of Sj we have [1 : m] ∈ Sj for all
m = 1, . . . , dj . Therefore, in order to obtain all [k : `] with `−k = n−1, we apply (6.11) several
times as follows.

[2 : n] = (yn − y1) [1 : n] + [1 : n− 1]

[3 : n+ 1] = (yn+1 − y2) [2 : n+ 1]
←−−−−−→

+ [2 : n]

. . .

[dj − n+ 2 : dj ] =
(
ydj − ydj−n+1

)
[dj − n+ 1 : dj ]←−−−−−−−−−−→

+ [dj − n+ 1 : dj − 1]

Here the symbol · · · under a term means that the term is taken directly from the previous line,
while · · ·←→ indicates that the induction hypothesis is used. In the end, the left-hand side terms
are shown to belong to spanSj .

In order to prove the second statement, we employ the first statement, (6.8) and Proposition
6.7, Item 1. �

Proof of Theorem 6.14. In one direction, assume that w0 = (x1, . . . , xr) is subordinated to C. It
is sufficient to show that every element of the standard basis (2.2) belongs to span {BC (w0)}.

Let τj ∈ T (w0), let dj be the corresponding multiplicity, and let Yj ⊆ Nr denote the index
set of size dj

Yj
def
= {i : xi = τj} .

By the definition of subordination, there exists an element in the partition of C, say Xk, for
which Yj ⊆ Xk. By Lemma 6.15 we conclude that for all subsets Z ⊆ Yj ,

∆Z (w0) ∈ span
{

∆Xk,m (w0)
}|Xk|
m=1

⊆ span {BC (w0)} .

By (6.7), ∆Z (w0) is nothing else but

∆Z (w0) = ∆|Z|−1

Ö
τj , . . . , τj︸ ︷︷ ︸
×|Z|

è
=

1

(|Z| − 1)!
δ(|Z|−1) (x− τj) .

This completes the proof of the necessity. In the other direction, assume by contradiction that
xk = x` = τ but nevertheless there exist two distinct elements of the partition C, say Xα and
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Xβ such that k ∈ Xα and ` ∈ Xβ . Let the sets {Sj}s(C)j=1 be defined by (6.10). Again, by Lemma
6.15 and (6.7) we conclude that

δ (x− τ) ∈ spanSα ∩ spanSβ .

But notice that BC (w0) =
⋃s(C)
j=1 Sj and

∑s
j=1 |Sj | = d, therefore by counting dimensions we

conclude that
dim span {BC (w0)} < d,

in contradiction to the assumption that BC (w0) is a basis.
Finally, one can evidently choose a sufficiently small neighborhood U ⊂ Cr of w0 such that

for all w ∈ U , no new collisions are introduced, i.e., w is still subordinated to C. The continuity
argument (Lemma 6.9) finishes the proof. �

Remark 6.16. Another possible method of proof is to consider the algebra of elementary fractions
in the Stieltjes space Sr, and use the correspondence (6.9).

As we mentioned, Theorem 6.10 follows as a corollary of Theorem 6.14 for the configuration
C consisting of a single partition set Nr.

6.4. Resolution of collision singularities. Let µ∗0 ∈ Σ∗r ⊂ C2r be given, and let (w0, g0) ∈ Pr
be a solution to the (rank-restricted) Prony problem. The point w0 is uniquely defined up to a
permutation of the coordinates, so we just fix a particular permutation. Let T (w0) = (τ1, . . . , τs).

Our goal is to solve the rank-restricted Prony problem for every input µ∗ ∈ C2r in a small
neighborhood of µ∗0. According to Theorem 5.7, this amounts to a continuous representation of
the solution Rµ∗ (z) =

Pµ∗ (z)

Qµ∗ (z) = TM−1
r (µ∗) to the corresponding diagonal Padé approximation

problem as an element of the bundle Pr.
Define δ = mini 6=j |τi − τj | to be the “separation distance” between the clusters. Since the

roots of Qµ∗ depend continuously on µ∗ and the degree of Qµ∗ does not drop, we can choose
some µ∗1 sufficiently close to µ∗0, for which

(1) all the roots of Qµ∗1 (z) are distinct, and
(2) these roots can be grouped into s clusters, such that each of the elements of the j-th

cluster is at most δ/3 away from τj .

Enumerate the roots of Qµ∗1 within each cluster in an arbitrary manner. This choice enables us
to define locally (in a neighborhood of µ∗1) r algebraic functions x1 (µ∗) , . . . , xr (µ∗), satisfying

Qµ∗ (z) =
s∏
j=1

(z − xj (µ∗)) .

Then we extend these functions by analytic continuation according to the above formula into
the entire neighborhood of µ∗0. Consequently,

w (µ∗)
def
= (x1 (µ∗) , . . . , xr (µ∗))

is a continuous (multivalued) algebraic function in a neighborhood of µ∗0, satisfying

w (µ∗0) = w0.

After this “pre-processing” step, we can solve the rank-restricted Prony problem in this neigh-
borhood of µ∗0, as follows.
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Algorithm 1 Solving rank-restricted Prony problem with collisions.
Let µ∗0 ∈ Σ∗r ⊂ C2r be given, and let (w0, g0) ∈ Pr be a solution to the (rank-restricted) Prony
problem. Let w0 be subordinated to some configuration C.
The input to the problem is a measurement vector µ∗ = (m0, . . . ,m2r−1) ∈ C2r, which is in a
small neighborhood of µ∗0.

(1) Construct the function w = w (µ∗) as described above.
(2) Build the basis BC (w) =

{
∆Xj,` (w)

}`=1,...,dj

j=1,...,s(C) for Vw.

(3) Find the coefficients {βj,`}
`=1,...,dj
j=1,...,s(C) such that

SM

Ñ∑
j,`

βj,`∆Xj,` (w)

é
= R (z) ,

by solving the linear system∑
j,`

βj,` (w) ∆Xj,` (w)︸ ︷︷ ︸
=g(w)

(
xk
)

= mk

Å
=

ˆ
xkg (w) (x) dx

ã
, k = 0, 1, . . . , 2r − 1. (6.12)

Theorem 6.17. The coordinates {βj,`} of the solution to the rank-restricted Prony problem,
given by Algorithm 6.4, are (multivalued) algebraic functions, continuous in a neighborhood of
the point µ∗0 .

Proof. Since the divided differences ∆j,` (w) are continuous in w, then clearly for each

k = 0, 1, . . . , 2r − 1

the functions
νj,`,k (w) = ∆j,` (w)

(
xk
)

= ∆`−1
(
wXj,`

) (
xk
)

are continuous2 in w, and hence continuous, as multivalued functions, in a neighborhood of µ∗0.
Since BC (w (µ∗)) remains a basis in a (possibly smaller) neighborhood of µ∗0, the system (6.12),
taking the form ∑

j,`

νj,`,k (w)βj,` (w) = mk, k = 0, 1, . . . , 2r − 1,

remains non-degenerate in this neighborhood. We conclude that the coefficients {βj,` (w (µ∗))}
are multivalued algebraic functions, continuous in a neighborhood of µ∗0. �

7. Real Prony space and hyperbolic polynomials

In this section we shall restrict ourselves to the real case. Notice that in many applications
only real Prony systems are used. On the other hand, considering the Prony problem over
the real numbers significantly simplifies some constructions. In particular, we can easily avoid
topological problems, related with the choice of the ordering of the points x1, . . . , xd ∈ C. So in
a definition of the real Prony space RPd we assume that the coordinates x1, . . . , xd are taken
with their natural ordering x1 ≤ x2 ≤ · · · ≤ xd. Accordingly, the real Prony space RPd is
defined as the bundle (w, g), w ∈

∏
d ⊂ Rd, g ∈ RVw. Here

∏
d is the prism in Rd defined by

the inequalities x1 ≤ x2 ≤ · · · ≤ xd, and RVw is the space of linear combinations with real
coefficients of δ-functions and their derivatives with the support {x1, . . . , xd}, as in Definition

2In fact, νj,`,k (w) are symmetric polynomials in some of the coordinates of w.
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2.4. The Prony, Stieltjes and Taylor maps are the restrictions to the real case of the complex
maps defined above.

In this paper we just point out a remarkable connection of the real Prony space and map-
ping with hyperbolic polynomials, and Vieta and Vandermonde mappings studied in Singularity
Theory (see [1, 13, 14, 15] and references therein).

Hyperbolic polynomials (in one variable) are real polynomials Q(z) = zd+
∑d
j=1 λjz

d−j , with
all d of their roots real. We denote by Γd the space of the coefficients Λ = (λ1, . . . , λd) ⊂ Rd of all
the hyperbolic polynomials, and by Γ̂d the set of Λ ∈ Γd with λ1 = 0, |λ2| ≤ 1. Recalling (2.3), it
is evident that all hyperbolic polynomials appear as the denominators of the irreducible fractions
in the image of RPd by SM . This shows, in particular, that the geometry of the boundary ∂Γ of
the hyperbolicity domain Γ is important in the study of the real Prony map PM : it is mapped
by PM to the boundary of the solvability domain of the real Prony problem. This geometry
has been studied in a number of publications, from the middle of 1980s. In [13] V. P. Kostov
has shown that Γ̂ possesses the Whitney property: there is a constant C such that any two
points λ1, λ2 ∈ Γ̂ can be connected by a curve inside Γ̂ of the length at most C‖λ2−λ1‖. “Vieta
mapping” which associates to the nodes x1 ≤ x2 ≤ · · · ≤ xd the coefficients of Q(z) having these
nodes as the roots, is also studied in [13]. In our notations, Vieta mapping is the composition
of the Stieltjes mapping SM with the projection to the coefficients of the denominator.

In [1] V.I.Arnold introduced and studied the notion of maximal hyperbolic polynomial, rel-
evant in description of Γ̂. Furthermore, the Vandermonde mapping V : Rd → Rd was defined
there by


y1 = a1x1 + . . .+ adxd,

. . .

yd = a1x
d
1 + . . .+ adx

d
d,

with a1, . . . , ad fixed. In our notations V is the restriction of the Prony mapping to the pairs
(w, g) ∈ RPd with the coefficients of g in the standard basis of RVw fixed. It was shown in [1]
that for a1, . . . , ad > 0 V is a one-to-one mapping of

∏
d to its image. In other words, the first d

moments uniquely define the nodes x1 ≤ x2 ≤ · · · ≤ xd. For a1, . . . , ad with varying signs, this is
no longer true in general. This result is applied in [1] to the study of the colliding configurations.

Next, the “Vandermonde varieties” are studied in [1], which are defined by the equations


a1x1 + . . .+ adxd = α1,

. . .

a1x
`
1 + . . .+ adx

`
d = α`.

` 6 d.

It is shown that for a1, . . . , ad > 0 the intersections of such varieties with
∏
d are either con-

tractible or empty. Finally, the critical points of the next Vandermonde equation on the Van-
dermond variety are studied in detail, and on this base a new proof of Kostov’s theorem is
given.

We believe that the results of [1, 13] and their continuation in [14, 15] and other publications
are important for the study of the Prony problem over the reals, and we plan to present some
results in this direction separately.
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Appendix A. Proof of Theorem 3.5

Recall that we are interested in finding conditions for which the Taylor mapping TM : Sd → Td
is invertible. In other words, given

S (z) =
2d−1∑
k=0

mk

Å
1

z

ãk+1

,

we are looking for a rational function R (z) ∈ Sd such that

S (z)−R (z) =
d1

z2d+1
+

d2

z2d+2
+ . . . . (A.1)

Write R (z) = P (z)
Q(z) with Q (z) =

∑d
j=0 cjz

j and P (z) =
∑d−1
i=0 biz

i. Multiplying (A.1) by
Q (z), we obtain

Q (z)S (z)− P (z) =
e1

zd+1
+

e2

zd+2
+ . . . . (A.2)

Proposition A.1. The identity (A.2), considered as an equation on P and Q with

degP < degQ ≤ d,

always has a solution.

Proof. Substituting the expressions for S, P and Q into (A.2) we get(
c0 + c1z + · · ·+ cdz

d
) (m0

z
+
m1

z2
+ . . .

)
− b0 − · · · − bd−1z

d−1 =
e1

zd+1
+ . . . . (A.3)

The highest degree of z in the left hand side of (A.3) is d−1. So equating to zero the coefficients
of zs in (A.3) for s = d− 1, . . . ,−d we get the following systems of equations:

0 0 0 m0

0 0 m0 m1

. .. . ..

m0 m1 . . . md−1



c1
c2
...
cd

 =


bd−1

bd−2

...
b0

 . (A.?)

From this point on, the equations become homogeneous:
m0 m1 . . . md

m1 m2 . . . md+1

. .. . ..

md−1 md . . . m2d−1



c0
c1
...
cd

 =


0
0
...
0

 . (A.??)

The homogeneous system (A.??) has the Hankel-type d × (d+ 1) matrix M̃d = (mi+j) with
0 6 i 6 d − 1 and 0 6 j 6 d. This system has d equations and d + 1 unknowns c0, . . . , cd.
Consequently, it always has a nonzero solution c0, . . . , cd. Now substituting these coefficients
c0, . . . , cd of Q into the equations (A.?) we find the coefficients b0, . . . , bd−1 of the polynomial
P , satisfying (A.?). Notice that if cj = 0 for j > `+ 1 then it follows from the structure of the
equations (A.?) that bj = 0 for j ≥ `. Hence these P,Q provide a solution of (A.2), satisfying
degP < degQ ≤ d, and hence belonging to Sd. �

However, in general (A.2) does not imply (A.1). This implication holds only if degQ = d.
The following proposition describes a possible “loss of accuracy” as we return from (A.2) to (A.1)
and degQ < d:
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Proposition A.2. Let (A.2) be satisfied with the highest nonzero coefficient of Q being c`, ` ≤ d.
Then

S(z)− P (z)

Q(z)
=

d1

zd+`+1
+

d2

zd+`+2
+ . . . . (A.4)

Proof. We notice that if the leading nonzero coefficient of Q is c` then we have
1

Q
=

1

z`
(

1

c` + c`−1

z + . . .
) =

1

z`
(f0 + f1

1

z
+ . . . ).

So multiplying (A.2) by 1
Q we get (A.4). �

Proof of Theorem 3.5. Assume that the rank of M̃d is r ≤ d, and that |Mr| 6= 0. Let us find
a polynomial Q(z) of degree r of the form Q(z) = zr +

∑r−1
j=0 cjz

j , whose coefficients satisfy
system (A.??). Put cr = (c0, . . . , cr−1, 1)T and consider a linear system M̃rcr = 0. Since by
assumptions |Mr| 6= 0, this system has a unique solution. Extend this solution by zeroes, i.e.,
put cd = (c0, . . . , cr−1, 1, 0, . . . , 0)T . We want cd to satisfy (A.??), which is M̃dcd = 0. This fact
is immediate for the first r rows of M̃d. But since the rank of M̃d is r by the assumption, its
other rows are linear combinations of the first r ones. Hence cd satisfies (A.??).

Now the equations (A.?) produce a polynomial P (z) of degree at most r− 1. So we get a ra-
tional function R(z) = P (z)

Q(z) ∈ Sr ⊆ Sd which solves the Padé problem (A.2), with degQ(z) = r.
Write R(z) =

∑∞
k=0 αk( 1

z )k+1. By Proposition A.2 we have mk = αk till k = d+ r − 1.
Now, the Taylor coefficients αk of R(z) satisfy a linear recurrence relation

mk = −
r∑
s=1

csmk−s, k = r, r + 1, . . . . (A.5)

Considering the rows of the system M̃dcd = 0 we see thatmk satisfy the same recurrence relation
(A.5) till k = d+ r − 1 (we already know that mk = αk till k = d+ r − 1). We shall show that
in fact mk satisfy (A.5) till k = 2d− 1.

Consider a d× r matrix M̄d formed by the first r columns of Md, and denote its row vectors
by vi = (mi,0, . . . ,mi,r−1), i = 1, . . . , d− 1. The vectors vi satisfy

vi = −
r∑
s=1

csvi−s, i = r, . . . , d− 1, (A.6)

since their coordinates satisfy (A.5) till k = d+r−1. Now v0, . . . ,vr−1 are linearly independent,
and hence each vi, i = r, . . . , d− 1, can be expressed as

vi =
r−1∑
s=0

γi,svs. (A.7)

Denote by ṽi = (mi,0, . . . ,mi,d), i = 1, . . . , d − 1 the row vectors of M̃d. Since by assumptions
the rank of M̃d is r, the vectors ṽi can be expressed through the first r of them exactly in the
same form as vi:

ṽi =
r−1∑
s=0

γi,sṽs, i = r, . . . , d− 1. (A.8)

Now the property of a system of vectors to satisfy the linear recurrence relation (A.6) depends
only on the coefficients γi,s in their representation (A.7) or (A.8). Hence from (A.6) we conclude
that the full rows ṽi of M̃d satisfy the same recurrence relation. Coordinate-wise this implies
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that mk satisfy (A.5) till k = 2d − 1, and hence mk = αk till k = 2d − 1. So R(z) solves the
original Problem 3.1.

In the opposite direction, assume that R(z) solves Problem 3.1, and that the representation
R(z) = P (z)

Q(z) ∈ Sr ⊂ Sd is irreducible, i.e., degQ = r. Write Q(z) = zr +
∑r−1
j=0 cjz

j . Then mk,
being the Taylor coefficients of R(z) till k = 2d − 1, satisfy a linear recurrence relation (A.5):
mk = −

∑r
s=1 csmk−s, k = r, r + 1, . . . , 2d − 1. Applying this relation coordinate-wise to the

rows of M̃d we conclude that all the rows can be linearly expressed through the first r ones. So
the rank of M̃d is at most r.

It remains to show that the left upper minor |Mr| is non-zero, and hence the rank of M̃d is
exactly r.

By Proposition 3.3, if the decomposition of R (z) in the standard basis is

R (z) =
s∑
j=1

dj∑
`=1

aj,`−1
(−1)

`−1
(`− 1)!

(z − xj)`
,

where
∑s
j=1 dj = r and {xj} are pairwise distinct, then the Taylor coefficients of R (z) are

given by (1.5). Clearly, we must have aj,dj−1 6= 0 for all j = 1, . . . , s, otherwise degQ < r, a
contradiction. Now consider the following well-known representation ofMr as a product of three
matrices (see e.g. [7]):

Mr = V (x1, d1, . . . , xs, ds)× diag {Aj}sj=1 × V (x1, d1, . . . , xs, ds)
T
, (A.9)

where V (. . . ) is the confluent Vandermonde matrix (4.1) and each Aj is the following dj × dj
block:

Aj
def
=


aj,0 aj,1 · · · · · · aj,dj−1

aj,1
(dj−1
dj−2

)
aj,dj−1 0

· · · · · · 0(
dj−1

2

)
aj,dj−1 0 · · · 0

aj,dj−1 0 · · · · · · 0

 .
The formula (A.9) can be checked by direct computation. Since {xj} are pairwise distinct and
aj,dj−1 6= 0 for all j = 1, . . . , s, we immediately conclude that |Mr| 6= 0.

This finishes the proof of Theorem 3.5. �
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