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Abstract

We study the problem of super-resolution of a linear combination of Dirac distributions and their
derivatives on a one-dimensional circle from noisy Fourier measurements. Following numerous recent
works on the subject, we consider the geometric setting of “partial clustering”, when some Diracs can
be separated much below the Rayleigh limit. Under this assumption, we prove sharp asymptotic bounds
for the smallest singular value of a corresponding rectangular confluent Vandermonde matrix with nodes
on the unit circle. As a consequence, we derive matching lower and upper min-max error bounds for the
above super-resolution problem, under the additional assumption of nodes belonging to a fixed grid.

Keywords— Super-resolution, Confluent Vandermonde matrix, Min-max error, Partial Fourier matrix,
Sparse recovery, Smallest singular value, Dirac distributions, Decimation, ESPRIT

1 Introduction

1.1 Background

The problem of computional super-resolution (SR) is to recover the fine details of an unknown object from
inaccurate measurments of inherently low resolution [1]. In recent years, there is much intrest in the problem
of reconstructing a signal modelled by a linear combination of Dirac δ−distributions (e.g. [2]–[11] and
references therein):

µ(x) =

s∑
j=1

ajδξj aj ∈ C, δξj = δ(x− ξj), ξj ∈ (−π, π] (1)

from noisy and bandlimited Fourier measurements:

yk := µ̂(k) + ηk, µ̂(k) = 〈µ, e−ikx〉, k = 0, 1, ...,M, |ηk| ≤ ε. (2)

For the model (1) we have µ̂(k) =
∑s
j=1 aje

ikξj , and therefore the measurement vector y = {yk}Mk=0 can
be expressed as

y = V a+ η ∈ CM+1 (3)

where V is the (M + 1)× s Vandermonde matrix with the nodes on the unit circle:

V := [eikξj ]j=1,...,s
k=0,...,M .

∗This research was supported by Israel Science Foundation grant 1792/20 and by Lower Saxony - Israel collaboration grant
from the Volkswagen Foundation.
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In order to describe the stability of this inverse problem, suppose that the nodes ξj belong to a grid of step
size ∆ and define the super-resolution factor (SRF) as 1

(M∆) . Suppose that at most ` 6 s nodes form a

”cluster” of size O(∆) (to be rigorously defined below). In the ”super-resolution regime” SRF � 1 [4], [5]
showed that σmin(V ) scales like SRF 1−` and consequently the worst-case reconstruction error rate of the
coefficients of µ as in (1) from noisy measurements (2) is of the order SRF 2`−1ε. Despite the great amount
of research devoted to the subject, there is currently no known tractable algorithm which provably achieves
these min-max bounds for all signals of interest [3].

1.2 Our contributions

In this work we extend the methods and results of [4], [5] to the model

µ =

s∑
j=1

ajδξj + bjδ
′
ξj , (4)

where δ
′

is the distributional derivative of the Dirac delta. The Vandermonde matrix V in (3) is replaced
by the so-called confluent Vandermonde matrix U , which is defined (up to normalization) as:

U := [eikξj kei(k−1)ξj ]j=1,...,s
k=0,...,M .

Under the partial clustering assumptions, in Theorem 3.1 and 3.2 we prove a sharp lower and upper bounds
for the smallest singular value of U in the super-resolution regime, and show that it scales like SRF 1−2`.
These bounds are proved by extending the decimation approach from [4] for the lower bound on σmin(U), and
by extending the finite difference approximation approach from [5] for the upper bound, further generalizing it
to any node vector ξ satisfying the clustering assumptions. In addition, our proof technique for bounding the
remainder part in the upper bound of the smallest singular value can be applied to gain a slight improvement
in Proposition 2.10 in [5] by relaxing the conditions on M,∆.

As a consequence, in Theorem 3.3 we also obtain sharp min-max bounds of order SRF 4`−1ε for the
problem of sparse super-resolution of signals (4) on a grid by extending the corresponding technique from
[4].

Also, we show numerically that the well-known ESPRIT method for exponential fitting (appropriately
extended to handle higher multiplicities) is optimal, meaning that it attains the min-max error bounds we
established in Theorem 3.3 for the recovered parameters of the signal (4).

In relation to prior work on the subject, in [12] the authors give a stability estimate for the more general
model (5) with arbitrary fixed n, however assuming that the number of measurementsN+1 equals the number

of unknowns. Evaluating their estimate for our model and notation, their bound is of order ∆4`−1ε
1
2 , while

ours in the same case is ∆4`−1ε. In contrast, [13] established the bound in the super-resolution setting of a
single cluster (and off-grid nodes) to be of order SRF 4`ε, while we derive the min-max rate SRF 4`−1ε.

1.3 Discussion

Naturally, our results and techniques pave the way to analyzing the general model

µ =

s∑
j=1

n∑
l=0

aj,lδ
(l)
ξj

(5)

in the clustered super-resolution regime. The applications of this model include modern sampling theory
beyond the Nyquist rate, algebraic signal recovery, interpolation and multi-exponential analysis, to name a
few (see [12]–[18] and references therein). At the same time, we believe that several recent developments on
the basic model (1) can be utilized to the more general setting, as follows.

• Recently, [2] succeeded to establish sharp bounds for the entire spectrum of V without requiring the
entire node set to be contained in a small interval of length π

s2 . We believe that similar techniques
could be applied to (4) in order to eliminate the above restriction.
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• Optimal scaling of the constants in the above bounds for the spectrum of V using harmonic analysis
techniques has been investigated in [19], and it would be interesting to extend these methods to (5).

• While we obtain min-max rates for nodes on a grid, we expect to get similar rates for the ”off-grid”
model as in [3], where the node locations can be any real number. Furthermore, it should be possible to
establish component-wise bounds for the coefficients of different orders and for the nodes themselves,
as done in [12], [13], [16] for the more restrictive geometric settings of the problem.

Going back to the model (1), confluent Vandermonde matrices appear naturally in the perturbation
analysis of the nonlinear least squares problems [3], [13] for exponential fitting, and we expect our methods
to be applicable in this context as well.

The paper is organized as follows. In section 2 we establish some notation. In section 3 we formulate the
main results, which are proved in section 4. Finally, in section 5 we present numerical evidence confirming
our bounds.

2 Preliminaries

2.1 Notation

Definition 2.1. For N ∈ N and a vector ξ = (ξ1, ..., ξs) of pairwise distinct real nodes ξj ∈ (−π, π], we
define the rectangular (2N + 1)× 2s confluent Vandermonde matrix UN (ξ) as

UN (ξ) :=
1√
2N

[
zkj kzj

k−1
]j=1,...,s

k=0,...,2N

s.t. zj = exp(iξj).

The main subject of the paper is the scaling of the smallest singular value of UN when some of the nodes
of ξ nearly collide (become very close to each other).

Definition 2.2 (wraparound distance). For t ∈ R, we denote

‖t‖T̃ :=
∣∣Arg exp(it)

∣∣ =
∣∣t mod (−π, π]

∣∣,
where Arg(z) is the principal value of the argument of z ∈ C \ {0}, taking values in (−π, π].

Definition 2.3 (minimal separation). Given a vector of s distinct nodes x := (x1, . . . , xs) with xj ∈ (−π, π],
we define the minimal separation (in wraparound sense) as

∆ := ∆(x) = min
i 6=j
‖xi − xj‖T̃ .

Definition 2.4. The node vector x = (x1, . . . , xs) ⊂
(
− π

2 ,
π
2

]
is said to form a (∆, ρ, s, `, τ)- clustered

configuration for some ∆ > 0, 2 ≤ ` ≤ s, `−1 ≤ τ ≤ π
∆ , and ρ ≥ 0 if for each xj there exist at most ` distinct

nodes
x(j) = {xj,k}k=1,...,rj ⊂ x, 1 ≤ rj ≤ `, xj,1 ≡ xj ,

such that the following conditions are satisfied:

1. For any y ∈ x(j) \ {xj}, we have
∆ ≤ ‖y − xj‖T̃ ≤ τ∆.

2. For any y ∈ x \ x(j), we have
‖y − xj‖T̃ ≥ ρ.

3



Definition 2.5. For ∆ > 0 let M =
⌊
π

2∆

⌋
and denote by T∆ the discrete grid

T∆ := {k∆, k = −M, . . . ,M} ⊂
[
− π

2
,
π

2

]
.

Further define G := G(∆) =
∣∣T∆

∣∣ = 2M + 1.

Definition 2.6. For ∆, ρ, s, `, τ as in Definition 2.4, let R := R(∆, ρ, s, `, τ) be the set of point distributions
of the form µ =

∑s
j=1 ajδtj + bjδ

′
tj where tj ∈ T∆ and aj , bj ∈ C for all j = 1, . . . , s, while t = (t1, . . . , ts)

forms a (∆, ρ, s, `, τ)-clustered configuration.

Definition 2.7. For fixed N ∈ N, ε > 0, N∆ < 1 and µ ∈ R(∆, ρ, s, `, τ), let

BNε (µ) :=

{
y ∈ C2N+1 :

( 1

2N

2N∑
k=0

∣∣yk − µ̂(k)
∣∣2) 1

2

< ε

}
,

where µ̂(k) are the Fourier coefficients as defined in (2).

Definition 2.8. Let A := A(R, N, ε) be the set of functions ϕ that maps each y ∈ ∪µ∈RBNε (µ) to a discrete
distribution ϕy ∈ R(∆, ρ, s, `, τ).

Definition 2.9. For µ =
∑s
j=1 ajδtj +bjδ

′
tj , the norm ‖µ‖2 is the discrete `2 norm of the coefficients vector:

‖µ‖2 :=
( s∑
j=1

|aj |2 + |bj |2
) 1

2

.

Definition 2.10 (min-max error). The `2 min-max error for the on-the-grid model is

E(R, N, ε) = inf
ϕ∈A

sup
µ∈R

sup
y∈BNε (µ)

‖ϕy − µ‖2 ,

where ϕy := ϕ(y) ∈ R.

3 Main Results

3.1 Optimal bounds for the smallest singular value

As in previous works on the subject, the main quantity of interest is the smallest singular value of UN .

Theorem 3.1. For each s ∈ N there exists a constant C1 = C1(s) such that for any 4τ∆ ≤ min(ρ, 1
s2 ), any

ξ = (ξ1, . . . , ξs) ⊂ 1
s2

(
− π

2 ,
π
2

]
forming a (∆, ρ, s, `, τ)-clustered configuration, and any N satisfying

max

(
4πs

ρ
, 4s3

)
≤ N ≤ πs

τ∆

we have
σmin(UN (ξ)) ≥ C1 · (N∆)

2`−1
.

Theorem 3.2. For each s ∈ N there exists a constant C2 = C2(`, τ) such that for any ξ = (ξ1, . . . , ξs)
forming a (∆, ρ, s, `, τ)-clustered configuration, and any N satisfying N ≤ 1

2∆ we have

σmin(UN (ξ)) ≤ C2 · (N∆)2`−1.

The proofs of the above results are given in Sections 4.2 and 4.3, respectively. For the lower bound, we
extend the decimation technique from [4] to the confluent setting. For the upper bound we generalize the
approach from [5] to hold for any clustered configuration ξ. Furthermore, our proof technique can be used
to slightly improve the condition (2.9) in Proposition 2.10 in [5] by requiring only that N∆ ≤ const instead
of N3/2∆ ≤ const.

4



3.2 Stable super-resolution of generalized spikes of order 1

In our setting, we assume that the spike locations are restricted to a discrete grid of step size ∆. In effect,
our results show that E � SRF 4`−1ε as SRF →∞.

Theorem 3.3. Fix s ≥ 1, 2 ≤ ` ≤ s, ε > 0. Put SRF := 1
N∆ . Then the following hold:

1. For any ρ ≥ 0, ` − 1 ≤ τ , and M ≥ π, there exists ∆0 = ∆0(M) and K ≥ 1
2sπ such that for every

SRF satisfying K ≤ SRF ≤ (2sM) ·K and for all ∆ ≤ ∆0, it holds that

E(R̂(∆, ρ, s, `, τ), N, ε) ≤ Cs,`SRF 4`−1ε

for some constant Cs,` depending only on s and `, where R̂ :=
{
µ : µ ∈ R, supp(µ) ⊂ 1

2πs2

(
− π

2 ,
π
2

]}
.

2. For any ρ ≥ 0, `− 1 ≤ τ and SRF ≥ 2, it holds that

E(R(∆, ρ, s, `, τ), N, ε) ≥ C`,τSRF 4`−1ε

for some constant C`,τ depending only on ` and τ .

The proof is presented in Section 4.4, largely repeating the arguments from [4], [5], together with the
above established bounds on σmin(UN ).

4 Proofs

4.1 Square confluent Vandermonde matrices

Definition 4.1. For s ∈ N and vector z = (z1, ..., zs) of pairwise distinct complex nodes |zj | = 1, we define
the square 2s× 2s confluent Vandermonde matrix

U2s(z) := [zkj kzk−1
j ]j=1,...,s

k=0,...,2s−1

Theorem 4.1 ([20]). Let x = (x1, ..., xn) be a vector of pairwise distinct complex numbers and let

bλ = max
(

1 + |xλ|, 1 + 2
(
1 + |xλ|

) n∑
ν=16=λ

1

|xν − xλ|

)
.

Then

∥∥U−1
2n (x)

∥∥
∞ ≤ max

1≤λ≤n
bλ

( n∏
ν=1 6=λ

1 + |xν |
|xν − xλ|

)2

Proposition 4.1. Let z = (z1, . . . , zs) be a vector of pairwise distinct complex nodes with |zj | = 1, j =
1, . . . , s. Denote by δj,k the angular distance between zj and zk:

δj,k := δj,k(z) =
∣∣Arg

( zj
zk

)∣∣∣ =
∣∣∣Arg(zj)−Arg(zk) mod(−π, π]

∣∣∣ .
Then

σmin

(
U2s(z)

)
≥ 42(1−s)
√

2sπ2(1−s)
min

1≤j≤s
γj
∏
k 6=j

δ2
j,k ,

where

γj = min
(1

2
,
(
1 +

8

π

∑
k 6=j

δ−1
j,k

)−1
)
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Proof. By Theorem 4.1 we have∥∥U−1
2s (z)

∥∥
∞ ≤ 22(s−1) max

1≤j≤s
bj
∏
k 6=j

∣∣zk − zj∣∣−2
, (6)

where

bj = max
(
2, 1 + 4

s∑
k 6=j

∣∣zj − zk∣∣−1)
.

For any |θ| ≤ π
2 , we have

π

2
|θ| ≤ sin |θ| ≤ |θ|

and since for any zj 6= zk ∣∣zj − zk∣∣ =
∣∣∣1− zj

zk

∣∣∣ = 2 sin
∣∣∣1
2

Arg
( zj
zk

)∣∣∣ = 2 sin
∣∣∣δj,k

2

∣∣∣ ,
we therefore obtain

π

2
δj,k ≤

∣∣zj − zk∣∣ ≤ δj,k.
Plugging into (6), we have

σmax

(
U−1

2s (z)
)
≤
√

2s
∥∥U−1

2s (z)
∥∥
∞ ≤

(
4

π

)2(s−1)√
2s max

1≤j≤s
bj

s∏
k 6=j

δ−2
j,k

and

bj = max
(
2, 1 +

8

π

s∑
k 6=j

δ−1
j,k

)
.

This finishes the proof with γj := b−1
j .

4.2 Proof of Theorem 3.1.

4.2.1 Overview of the proof

First we use the Decimation technique that has first been introduced in [4]. It states that there exists a
certain blow-up factor λ such that the mapped nodes {eiλxj} attain ”good” separation properties. Second,
for any such λ of order O(N), we can partition the rectangular confluent Vandermonde matrix into squared
well-conditioned confluent matrices and use this partition to bound σmin from below.

In order to use the corresponding results from [4], we introduce an auxiliary bandwidth parameter Ω.

Definition 4.2. For N, s ∈ N, a vector x = (x1, ..., xs) of pairwise distinct real nodes xj ∈
(
− π

2 ,
π
2

]
, and a

bandwidth parameter 0 < Ω ≤ 2N , let ξ = (ξ1, . . . , ξs) where ξj =
xjΩ
N . Then we define

UN (x,Ω) := UN (ξ) = UN
(Ω

N
x
)

=
1√
2N

[
exp

(
ik
xjΩ

N

)
k exp

(
i(k − 1)

xjΩ

N

)]j=1,...,s

k=0,...,2N
∈ C(2N+1)×(2s).

4.2.2 The existence of an admissible decimation

We can now use a key result from [4].

Lemma 4.1 (Lemma 4.1 in [4]). Let x form a (∆, ρ, s, `, τ) clustered configuration, and suppose that 4πs
ρ ≤

Ω ≤ πs
τ∆ . Then, for any 0 ≤ ξ ≤ 1, there exists a set I ⊂

[
Ω
2s ,

Ω
s

]
of total measure Ω

2sξ such that for every

λ ∈ I, the following holds for every xj ∈ x:

6



1.

‖λy − λxj‖T̃ ≥ λ∆ ≥ ∆Ω

2s
∀y ∈ x(j) \ {xj}

2.

‖λy − λxj‖T̃ ≥
1− ξ
s2

π ∀y ∈ x \ x(j)

Furthermore, the set Ic :=
[

Ω
2s ,

Ω
s

]
\ I is a union of at most s2

2

⌈
Ω
4s

⌉
intervals.

Fix ξ = 1
2 and consider the set I given by the above Lemma. Let us also fix a finite and positive integer

N and consider the set of 2N + 1 equispaced points in [0, 2Ω]:

PN :=
{
k

Ω

N

}
k=0,...,2N

.

Proposition 4.2. If N > 2s3
⌈

Ω
4s

⌉
, then PN ∩ I 6= ∅.

Proof. Exactly as the proof of Proposition 4.2 in [4].

We are now in a position to extend the main result from [4] to the confluent setting.

Theorem 4.2. There exists a constant C = C(s) such that for any x forming a (∆, ρ, s, `, τ)-clustered
configuration, and any Ω satisfying

4πs

ρ
≤ Ω ≤ πs

τ∆
,

we have

σmin

(
UN (x,Ω)

)
≥ C · (∆Ω)2`−1 whenever N > 2s3

⌈
Ω

4s

⌉
.

Proof. Similarly to the proof of theorem 3.2 in [4], for any subset R ⊂ {0, . . . , 2N} let UN,R be the submatrix
of UN containing only the rows in R. In particular, if {0, . . . , 2N} = R1∪̇ . . . ∪̇Rp then

σ2
min(UN ) ≥

p∑
n=1

σ2
min(UN,Rn).

By Lemma 4.1 and Proposition 4.2, there exists m ∈ N, 0 ≤ m ≤ 2N such that

uj := xj
Ω

N
m = λxj

with

τ

2s
(∆Ω) ≥ ‖uj − uk‖T̃ ≥

1

2s
(∆Ω) ∀xk ∈ x(j) \ {xj};

π ≥ ‖uj − uk‖T̃ ≥
π

2s2
∀xk ∈ x \ x(j).

(7)

Since λ ≤ Ω
s we conclude that 2ms ≤ 2N .

We will divide UN to m squared matrices of size 2s× 2s in the following form:

R0 = {0,m, . . . , (2s− 1)m},
R1 = {1,m+ 1, . . . , (2s− 1)m+ 1},

...

Rm−1 = {m− 1, 2m− 1, . . . , 2sm− 1}.
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For k = 0, 1, . . . ,m − 1 each UN,Rk is a square confluent Vandermonde matrix, and it can be checked by
direct computation that

UN,Rk(ν) =
1√
2N

U2s(ν)D(z,m)T (z, k)

where ν =
{

exp (iuj)
}s
j=1

and z =
{

exp (ixj
Ω
N )
}s
j=1

, with

D(z,m) = diag(1, . . . , 1,mzm−1
1 , . . . ,mzm−1

s ) ,

T (z, r) :=



zr1 . . . 0 rzr−1
1 . . . 0

...
. . .

...
. . .

...
0 . . . zrs 0 . . . rzr−1

s

0 . . . 0 zr1 . . . 0
...

. . .
...

. . .
...

0 . . . 0 0 . . . zrs


.

Recall the well-known formula for a block matrix inverse.

Lemma 4.2 (e.g. [21]). Consider the block upper triangular matrix[
A B
0 D

]
.

It is invertible if and only if both A and D are invertible, and its inverse is given by[
A−1 −A−1BD−1

0 D−1

]
Lemma 4.3. For r ∈ Z, s,m ∈ N, m 6= 0 and vector z = (z1, ..., zs) of pairwise distinct complex nodes with
|zj | = 1 we have ∥∥P−1(z, r,m)

∥∥
∞ =

∣∣∣∣ rm
∣∣∣∣+ 1 ,

where
P (z, r,m) = D(z,m)T (z, r) .

Proof. By direct computation,

P (z, r,m) :=



zr1 . . . 0 rzr−1
1 . . . 0

...
. . .

...
. . .

...
0 . . . zrs 0 . . . rzr−1

s

0 . . . 0 mzr+m−1
1 . . . 0

...
. . .

...
. . .

...
0 . . . 0 0 . . . mzr+m−1

s


=

[
A B
0 C

]

where
A := diag(zr1 , . . . , z

r
s), B := diag(rzr−1

1 , . . . , rzr−1
s ),

C := diag(mzm+r−1
1 , . . . ,mzm+r−1

s ).

By Lemma 4.2 we get

P−1(z, r,m) =

[
A−1 −A−1BC−1

0 C−1

]
,

8



where −A−1BC−1 = diag(− r
mz
−(r+m)
1 , . . . ,− r

mz
−(r+m)
s ). Thus∥∥P−1(z, r,m)

∥∥
∞ = max

k

∣∣z−rk ∣∣+

∣∣∣∣− r

m
z
−(r+m)
k

∣∣∣∣ = 1 +

∣∣∣∣ rm
∣∣∣∣ .

Now, let us take a look at γj from Proposition 4.1:

γj = min
(1

2
,
(
1 +

8

π

( s∑
k 6=j

δ−1
j,k

))−1
)
,

where
δj,k := δj,k(ν) .

We will show two properties:

1. ∑
k 6=j

δ−1
j,k ≤

2s`

∆Ω
+

2(s− `)s2

π
≤ 2s`π + 2(s− `)s2∆Ω

∆Ωπ

(1 +
8

π

∑
k 6=j

δ−1
j,k )−1 ≥ ∆Ωπ2

∆Ωπ2 + 16s(`π + (s− `)s∆Ω)

Given that ∆Ω < πs
τ < πs, we have

(1+
8

π

∑
k 6=j

δ−1
j,k )−1 ≥ ∆Ω

π2

π3s+ 16s(`π + (s− `)sπs)
≥ ∆Ω

π

π2s+ 16s(`+ (s− `)s2)
≥ ∆Ω

π

π2s+ 16s2 + 16s4

⇒
(
1 +

8

π

∑
k 6=j

δ−1
j,k

)−1 ≥ κ(s)∆Ω , (P1)

where
κ(s) =

π

π2s+ 16s2 + 16s4
.

2. Using 2 ≤ ` ≤ s and ∆Ωτ < πs we get

(
1 +

8

π

∑
k 6=j

δ−1
j,k

)−1 ≤
(

1 +
8

π

{( 2s

τ∆Ω

)
(`− 1) +

1

π
(s− `)

})−1

1 +
8

π

∑
k 6=j

δ−1
j,k ≥ 1 +

8

π

(2sπ(`− 1) + (s− `)τ∆Ω

τ∆Ωπ

)
= 1 +

16sπ(`− 1) + 8(s− `)τ∆Ω

τ∆Ωπ2

=
τ∆Ωπ2 + 16sπ(`− 1) + 8(s− `)τ∆Ω

τ∆Ωπ2
≥ τ∆Ω(π2 + 16(`− 1) + 8(s− `))

τ∆Ωπ2
≥ 2

⇒
(
1 +

8

π

∑
k 6=j

δ−1
j,k

)−1 ≤ 1

2
.

⇒ γj = min
(1

2
,
(
1 +

8

π

∑
k 6=j

δ−1
j,k

)−1
)

=
(
1 +

8

π

∑
k 6=j

δ−1
j,k

)−1
. (P2)
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Using Proposition 4.1 and Lemma 4.3 we are going to bound from below the smallest singular value of
the square confluent Vandermonde matrix:

σmin(UN,Rr ) = σmin

( 1√
2N

U2s(ν)D(z,m)T (z, r)
)
≥ σmin

(
U2s(ν)

)(√
2N
√

2s
∥∥P−1(z, r,m)

∥∥
∞

)−1

≥ 1

2s
√

2N

(
4

π

)2(1−s)(
1 +

∣∣∣∣ rm
∣∣∣∣)−1

min
1≤j≤s

γj

s∏
k 6=j

δ2
j,k(ν)

≥ κ̃(s)√
2N

(
1 +

∣∣∣∣ rm
∣∣∣∣)−1

(∆Ω)2`−1

for some constant κ̃(s). Ahead of the last step we used (7), properties (P1), (P2) and the fact that 1 < ` ≤ s.
Finally, we can bound from below the smallest singular value of the rectangular confluent Vandermonde

matrix:

σ2
min(UN ) ≥

m−1∑
r=0

(
1 +

∣∣∣∣ rm
∣∣∣∣)−2

κ̃2(s)

2N
(∆Ω)2(2`−1)

≥ κ̃2(s)

2N
(∆Ω)2(2`−1)

m−1∑
r=0

(2)−2

≥ mκ̃2(s)

8N
(∆Ω)4`−2

≥ κ̃2(s)

16s
(∆Ω)4`−2.

We used the fact that m = λN
Ω ≥

ΩN
2sΩ = N

2s .

To summarize, the final result for Theorem 4.2 is

σmin(UN (x,Ω)) ≥ C1(s)(∆Ω)2`−1 , C1(s) :=
κ̃(s)√

16s
.

Proof of Theorem 3.1. Similar to [4, Corollary 3.6]), for Ω := N
s2 and any ξ ⊂ 1

s2

(
− π

2 ,
π
2

]
forming a

(∆, ρ, s, `, τ)-clustered configuration with the conditions of Theorem 3.1, we have x = N
Ω ξ ⊂

(
− π

2 ,
π
2

]
which forms a (∆̃, ρ̃, s, `, τ)-clustered configuration with ∆̃ := s2∆ and ρ̃ := s2ρ.
Clearly, 4τ∆̃ ≤ s2ρ = ρ̃ and also

Ωs2 = N ≥ 4s3 ⇒ Ω

4s
≥ 1 ⇒ 2Ω

4s
≥
⌈

Ω

4s

⌉
⇒ N = Ωs2 ≥ 2s3

⌈
Ω

4s

⌉
,

thus the conditions of Theorem 4.2 are satisfied for x,Ω, ρ̃, ∆̃, τ . Therefore

σmin

(
UN (ξ)

)
= σmin

(
UN (x,Ω)

)
≥ C · (∆̃Ω)2`−1 = C ·

(
N

Ω
∆Ω

)2`−1

= C · (∆N)2`−1 ,

finishing the proof of Theorem 3.1.
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4.3 Proof of Theorem 3.2.

Definition 4.3. For M, s ∈ N and a vector ω = (ω1, ..., ωs) of pairwise distinct real nodes ωj ∈ T, let ΦM
denote the (M + 1)× 2s confluent Vandermonde matrix

ΦM (ω) =


1 . . . 1 0 . . . 0
z1 . . . zs 1 . . . 1
z2

1 . . . z2
s 2z1 . . . 2zs

... . . .
...

... . . .
...

zM1 . . . zMs MzM−1
1 . . . MzM−1

s

 ,

and let VM denote the (M + 1)× 2s pascal Vandermonde matrix

VM (ω) =


1 . . . 1 0 . . . 0
z1 . . . zs 2πiz1 . . . 2πizs
z2

1 . . . z2
s 4πiz2

1 . . . 4πiz2
s

... . . .
...

... . . .
...

zM1 . . . zMs M2πizM1 . . . 2MπizMs

 ,

where zj = exp(−2πiωj) and T is the periodic interval [0, 1).

By direct computation we get
VM = ΦMH

with H = diag(1, . . . , 1, 2πiz1, . . . , 2πizs).
Inspired by the proof of Proposition 2.10 in [5], we will consider ω = ξ

−2π + 1
2 where ξ is a (∆, ρ, s, `, τ)-

clustered configuration and a suitable vector u in order to obtain an upper bound for

σmin(ΦM (ω)) = min
u∈C2s,u 6=0

‖ΦM (ω)u‖2
‖u‖2

.

Put α := M∆, assume that M < 1
∆ and let ω = {ωj}sj=1 be defined w.l.o.g by ωj = τj

α
M where τ1 = 0,

τj < τj+1, τ` ≤ τ for 1 ≤ j ≤ `, while {ωj}s`+1 are arbitrary.

Definition 4.4. We consider the vector u ∈ C2s defined by

uj :=

(
α

M

)2`−1

Aj 1 ≤ j ≤ ` (?)

us+j :=

(
α

M

)2`−1

2πizjBj 1 ≤ j ≤ `

uj = us+j = 0 otherwise ,

where zj := exp(−2πiωj) and Aj , Bj are as given by equation (??) from appendix A.1.

Let ũj := uj , ũs+j :=
z−1
j

2πi us+j for 1 ≤ j ≤ ` and ũj = ũs+j = 0 otherwise. To estimate ‖Φu‖2, we
identify u with the discrete distribution

µ :=
∑̀
j=1

ũjδτj αM + ũs+jδ
′
τj

α
M
. (8)

We also define a modified Dirichlet kernel DM ∈ C∞(T) by

DM (ω) :=

M∑
m=0

exp(2πimω) . (9)
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Lemma 4.4. For µ and DM as defined in (8), (9), the following is true:

M∑
m=0

|µ̂(m)|2 = ‖µ ∗DM‖2L2(T).

The proof of the above lemma is in appendix A.4. Thus, observe the following:

‖ΦMu‖22 = ‖VMH−1u‖22 = ‖VM ũ‖22 =

M∑
m=0

|(VM ũ)m|
2 =

M∑
m=0

|µ̂(m)|2 = ‖µ ∗DM‖2L2(T).

As shown in appendix A.1, we see that for all ω ∈ T

(µ ∗DM )(ω) =
∑̀
j=1

(
ũjDM

(
ω − τjα

M

)
+ ũs+jD

′
M

(
ω − τjα

M

))

=

(
α

M

)2`−1

D
(2`−1)
M (ω) +

(
α

M

)2`−1

{RA(ω) +RB(ω)} ,

(10)

where RA(ω) and RB(ω) are written explicitly in appendix A.1.
By the Bernstien inequality for trigonometric polynomials [22], we have

‖D(2`−1)
M ‖L2(T) ≤ (2πM)

2`−1‖DM‖L2(T) =
√

(M + 1)(2πM)2`−1 . (11)

Lemma 4.5. For RA(ω) and RB(ω) as defined in appendix A.1 in the appendix, we have

‖RA(ω)‖L2(T) ≤
(
α

M

)2`√
M + 1(2πM)2` τ2`

(2`− 1)!

∑̀
i=1

∣∣Ai∣∣,
‖RB(ω)‖L2(T) ≤

(
α

M

)2`−1√
M + 1(2πM)2` τ2`−1

(2`− 1)!

∑̀
i=1

∣∣Bi∣∣.
Lemma 4.6. For 1 ≤ i ≤ ` and Aj, Bj as defined in appendix A.1, we can bound the following expressions
as follows:

∑̀
i=1

∣∣Ai∣∣ ≤ CA(`, τ)

(
M

α

)2`−1

,

∑̀
i=1

∣∣Bi∣∣ ≤ CB(`, τ)

(
M

α

)2`−2

.

The proofs of Lemmas 4.5 and 4.6 are shown in appendix A.2 and A.3 respectively.
Combining (11) and Lemmas 4.6 and 4.5 we get:

‖µ ∗DM‖L2(T) ≤
(
α

M

)2`−1(
‖D(2`−1)

M ‖L2(T) + ‖RA(ω)‖L2(T) + ‖RB(ω)‖L2(T)

)
≤
√
M + 1(2πα)2`−1(1 + C̃(`, τ)2πα) .

(12)

The proof of the following lemma is in appendix A.5.

Lemma 4.7. Let u ∈ C2s be defined by equation (?) from Definition 4.4, then

‖u‖2 ≥ C̃3(`, τ) :=
(2`− 1)!

4`3τ2`−1
. (13)
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Combining (12) and (13) we get:

‖ΦMu‖2
‖u‖2

≤
√
M + 1(2πα)2`−1(1 + C̃(`, τ)2πα)

C̃3(`, τ)
≤ Ĉ(`, τ)

√
M + 1(2πα)2`−1 .

Proposition 4.3. For N, s, d ∈ N and vector ξ = (ξ1, ..., ξs) of pairwise distinct real nodes ξj ∈ (−π, π], let
Φ2N be as in definition 4.3. Then, the following decomposition holds:

Φ̃2N (η) :=
1√
2N

Φ2N

(
ξ

−2π
+

1

2

)
=

1√
2N

E1Φ2N

(
ξ

−2π

)
E2 = E1UN (ξ)E2 ,

where

E1 = diag(1, e−2πi 12 , . . . , e−2πiM 1
2 )2s×2s and E2 = diag(1, . . . , 1, e2πi 12 , . . . , e2πi 12 )2s×2s .

Therefore, Φ̃2N (η) and UN (ξ) are unitary equivalent and thus have the same singular values.

Finally, by Proposition 4.3 and setting M = 2N we get:

ξ

−2π
+

1

2
= ω ⇒ ξ = 2πω − π ,

and

σmin(UN (ξ)) = σmin

(
Φ̃2N

(
ξ

−2π
+

1

2

))
= σmin(Φ̃2N (ω))) ≤ C2(`, τ)(2πα)2`−1 ,

completing the proof of Theorem 3.2.

4.4 Proof of Theorem 3.3

4.4.1 Notation

Definition 4.5 (Pascal-Vandermonde matrix). For t = (t1, . . . , ts) ∈ R1×s and zj = eitj let

H := H(t) = diag(1, . . . , 1,−iz1, . . . ,−izs)2s×2s, PN (t) = UN (t)H(t).

Every discrete distribution µ =
∑s
j=1 ajδtj +bjδ

′
tj ∈ R can be identified with a sparse vector xµ ∈ C2G

R ⊂
C2G, where G = G(∆) = 2M + 1 and M =

⌊
π

2∆

⌋
from definition 2.5, ‖x‖0 = #(i|xi 6= 0),

(xµ)i :=


aj tj = (−M + i− 1)∆ ∈ t ∧ 1 ≤ i ≤ G
−ibj tj = (−M + i− 1−G)∆ ∈ t ∧ G+ 1 ≤ i ≤ 2G

0 otherwise

(14)

for j = 1, . . . , 2s and

C2G
R(∆,ρ,s,`,τ) :=

{
xν : ν ∈ R(∆, ρ, s, `, τ), xν ∈ C2G, ‖xν‖0 ≤ 2s and xν as defined in (14)

}
.

A direct computation shows that for every ω ∈ R

µ̂(ω) =

s∑
j=1

aje
iωtj − iωbjeiωtj .

Thus we can write 
µ̂(−M)

µ̂(−M + 1)
...

µ̂(M)


(G×1)

=
(
FG F ′G

)
xµ,

where FG =
[
eikj∆

]j=−M,...,M

k=−M,...,M
is a G×G matrix and F ′G = diag(−M, ...,M)FG.
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Corollary 4.1. Assume that 2N ≤M , let F2N+1 and F ′2N+1 be the 2N + 1 rows {M, . . . ,M + 2N} of FG
and F ′G respectively. In addition, let F̃2N =

(
F2N+1 F ′2N+1

)
. Then,

F̃2Nxµ =
√

2NPNvµ =
√

2NUNwµ = (µ̂(0), . . . , µ̂(2N))T ,

where

vµ =



a1

...
as
b1
...
bs


, wµ = Hvµ =



a1

...
as
−iz1b1

...
−izsbs


.

Definition 4.6. For N ∈ N and y ∈ C2N+1, let the norm

‖y‖22,N :=
1

2N

2N∑
k=0

|yk|2 .

4.4.2 Proof of the upper bound

As in [5], we choose any ϕ such that ϕy ∈ {ν : ‖F̃2Nxν − y‖2,N ≤ ε}. Note that xµ satisfies the same

constraint ‖F̃2Nxµ − y‖2,N ≤ ε, which means that such ϕy exists. Then we have:

E(R, N, ε) ≤ sup
µ∈R

sup
y∈BNε (µ)

‖ϕy − µ‖2.

By Lemma 4.7 in [4] there exists ∆0(M) such that for all ∆ ≤ ∆0 and any xµ ∈ C2G
R(∆,ρ,s,`,τ), we have

t := supp(ϕy − µ) ∈ R(∆, ρ′, s′, `′, τ ′)

⇒ xϕy − xµ ∈ C2G
R(∆,ρ′,s′,`′,τ ′)

where s′ ≤ 2s, `′ ≤ 2`, τ ′ ≥ 1 and ρ′ = 8sMτ ′∆. In addition we have ρ′ ≤ ρ
2 ≤

1
4s2 ≤

1
s′2 and in particular,

4τ ′∆ < min(ρ′, 1
s′2

) = ρ′, therefore, by applying Theorem 3.1, we obtain that for K := τ ′

πs′ and all N
satisfying

max

(
πs′

2sMτ ′∆
=

4πs′

ρ′
, 4s′

3
)
≤ N ≤ πs′

τ ′∆

we have K ≤ 1
N∆ ≤ (2sM)K and:

2ε

‖ϕy − µ‖2
≥

∣∣∣∣‖F̃2Nxϕy − y‖2,N − ‖F̃2Nxµ − y‖2,N
∣∣∣∣

‖ϕy − µ‖2
≥
‖F̃2N (xϕy − xµ)‖2,N

‖ϕy − µ‖2

=
‖PN (t)(vϕy − vµ)‖2
‖vϕy − vµ‖2

=
‖UN (t)(H(t)vϕy −H(t)vµ)‖2
‖H−1(t)(H(t)vϕy −H(t)vµ)‖2

≥
‖UN (t)(wϕy − wµ)‖2
‖H−1(t)‖2‖wϕy − wµ‖2

≥ σmin(UN (t))

≥ Cs′,`′(N∆)
2`′−1 ≥ C2s,2`(N∆)

4`−1
.
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4.4.3 Proof of the lower bound

Pick any (∆, ρ, 2s, 2`, τ)-clustered configuration t = (t1, . . . , t2s). Let w ∈ C4s be a unit norm singular vector
of UN (t) that corresponds to its smallest singular value, put v = H−1(t)w and define the corresponding

µ =
∑2s
j=1(v)2j−1δtj + (v)2jδ

′
tj ∈ R(∆, ρ, 2s, 2`, τ) (so in fact according to our previous notation w = wµ and

v = vµ). By this construction, we obtain

σ := σmin(UN (supp(µ)) = ‖UNwµ‖2 = ‖PNvµ‖2 = ‖F̃2Nxµ‖2,N .

Write t as a disjoint union of two (∆, ρ, s, `, τ)-clustered configurations t1, t2, implying that µ = µ1 − µ2

where suppµi = ti and µi ∈ R(∆, ρ, s, `, τ) for i = 1, 2. Let xi = ε
σxµi ∈ C2G

R(∆,ρ,s,`,τ), for i = 1, 2, so that
ε
σxµ = x1 − x2.

Now suppose we are given the data:

y = F̃2Nx1 = F̃2Nx2 + F̃2N (x1 − x2).

Let e := 1√
2N
F̃2N (x1 − x2) ∈ C2N+1. The previous equations imply:

‖e‖2 = ‖F̃2N (x1 − x2)‖2,N =
ε

σ
‖F̃2Nxµ‖2,N = ε.

For an arbitrary ϕ we have

ε

σ
=
ε

σ
‖wµ‖2 =

ε

σ
‖xµ‖2

= ‖x1 − x2‖2
≤ ‖x1 − xϕy‖2 + ‖x2 − xϕy‖2
≤ 2 max

k=1,2
‖xk − xϕy‖2

and so by definition of E and Theorem 3.2 we conclude that for SRF ≥ 2 it holds

E(R, N, ε) ≥ inf
ϕ∈A

max
k=1,2

‖xϕy − xk‖2 ≥
ε

2σ
≥ ε

2Cτ,2`(N∆)
4`−1

.

5 Numerical experiments

In order to validate the bounds of Theorems 3.1 and 3.2, we computed σmin(UN ) for varying values of
∆, N, `, s and the actual clustering configurations. As before, we put SRF := 1

N∆ . We checked two clustering
scenarios:

1. Figure 1a - A single equispaced cluster of size ` in [−π2 ,−
π
2 + `∆] with the rest of the nodes equally

spaced and maximally separated in (−π2 + `∆, π2 ].

2. Figure 1b - A multi-cluster configuration with the first equispaced cluster of size `1 in [−π2 ,−
π
2 + `∆]

and the second equispaced cluster of size `2 in [π2 − `2∆, π2 ] with the rest of the nodes equally spaced
and maximally separated in (−π2 + `1∆, π2 − `2∆).

15



(a) Single Cluster

(b) Multi Cluster, ` = `max

Figure 1: Decay rate of σmin as a function of SRF . Results of n = 1000 random experiments with randomly
chosen ∆, N are plotted versus the theoretical bound SRF 1−2`.
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We also show in figure 2 that the vector u defined in (?) is indeed an approximate minimal singular vector,

by plotting the Rayleigh quotient ‖ΦM (ω)u‖2
‖u‖2 versus the minimal singular value σmin(ΦM (ω)), where ΦM is

the confluent Vandermonde matrix as in Definition 4.3 and ω is a single-cluster equispaced configuration.

Figure 2: The Rayleigh quotient of the vector u defined in (?) versus the minimal singular value of ΦM . We
can see that they scale the same and differ by a constant.

Finally, in order to validate the bounds of Theorem 3.3, we computed the `2 min-max error E as in
Definition 2.10 and also the `2 errors of estimating the nodes Eξ, and the coefficients Ea, Eb of the worst-
case discrete distribution µ defined by (8) assuming s = `. We used the ESPRIT (Estimation of Signal
Parameters via Rotation Invariance Techniques) [23] method for recovering the nodes {tj}sj=1 (see more
about this method in appendix B). ESPRIT is considered to be one of the best performing subspace methods
for estimating parameters of model (1) with white Gaussian noise. Originally developed in the context of
frequency estimation [24], it has been generalized to the full model (5) in [14]. Recently it has been shown
that if the noise level ε in the measurements (2) is sufficiently small, the error committed by ESPRIT for
estimating the nodes of the simple model (1) is nearly min-max [25]. Consequently, we conjecture the same
near-optimal behaviour in the model (4). In order to recover the coefficients aj , bj we solve a linear system
of equations by the Least Squares method:

min ‖UN (ξ̃)vµ − y‖2 ,

where ξ̃ are the recovered nodes. Note that we prove the theoretical bound to the on-grid model however the
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ESPRIT algorithm recovers the nodes without taking the grid assumption into account. We have checked
two cases:

1. Figure 3a - A single equispaced cluster of size s = ` = 2 with error ε = 10−12.

2. Figure 3b - A single equispaced cluster of size s = ` = 3 with error ε = 10−12.

Our results suggest that the ESPRIT method might indeed be optimal, meaning that it attains the min-max
error bounds we established in Theorem 3.3 for the recovered parameters of signal (4).

(a)
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(b)

Figure 3: Accuracy of ESPRIT. Results of n=500 random experiments with randomly chosen ∆ and fixed
N are plotted versus the theoretical bound SRF 4`−1ε.

Note that all figures are in logarithmic scale.
The code for the above experiments is available at https://github.com/Gnflu/SR-of-conVan-sys.git

A Computations for Theorem 3.2

A.1 Finite difference coefficients

We seek approximation of the form:

D
(2`−1)
M (ω) ≈

∑̀
i=1

AiDM (xi) +BiD
′
M (xi) = SA,B(ω)

where
xi = ω − τi∆, ∆ =

α

M
,
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and

SA,B(ω) =
∑̀
i=1

AiDM (xi) +BiD
′
M (xi) =

∑̀
i=1

AiDM (ω + xi − ω) +BiD
′
M (ω + xi − ω).

Let hi := xi − ω = −τi∆ = τih, h = −∆. Then by Taylor expansion of DM (ω + hi) and using the integral
form of the remainder we have:

SA,B(ω) =
∑̀
i=1

Ai

( 2`−1∑
k=0

D
(k)
M (ω)

k!
hki +

∫ ω+hi

ω

D
(2`)
M (t)

(2`− 1)!
(ω + hi − t)2`−1 dt

)

+Bi

( 2`−2∑
k=0

D
(k+1)
M (ω)

k!
hki +

∫ ω+hi

ω

D
(2`)
M (t)

(2`− 2)!
(ω + hi − t)2`−2 dt

)
By the change of variable t = ω + hir we have dt = hidr and therefore

SA,B(ω) =

2`−1∑
k=0

D
(k)
M (ω)

k!

(∑̀
i=1

Aih
k
i

)
+

2`−2∑
k=0

D
(k+1)
M (ω)

k!

(∑̀
i=1

Bih
k
i

)
+

1

(2`− 1)!

∑̀
i=1

Ai

∫ 1

0

D
(2`)
M (ω + hir)(hi − hir)2`−1hi dr

+
1

(2`− 2)!

∑̀
i=1

Bi

∫ 1

0

D
(2`)
M (ω + hir)(hi − hir)2`−2hi dr

= P (ω) +RA(ω) +RB(ω),

where

P (ω) =

2`−1∑
k=0

D
(k)
M (ω)

k!

(∑̀
i=1

Aih
k
i

)
+

2`−2∑
k=0

D
(k+1)
M (ω)

k!

(∑̀
i=1

Bih
k
i

)
,

RA(ω) =
1

(2`− 1)!

∑̀
i=1

Ai

∫ 1

0

D
(2`)
M (ω + hir)(hi − hir)2`−1hi dr ,

RB(ω) =
1

(2`− 2)!

∑̀
i=1

Bi

∫ 1

0

D
(2`)
M (ω + hir)(hi − hir)2`−2hi dr.

We seek A1, . . . , A` and B1, . . . , B` so that P (ω) ≡ D
(2`−1)
M (ω), thus the following equations should be

fulfilled:

1. ∑̀
i=1

Ai = 0

2. ∑̀
i=1

(Ai +
kBi
hi

)hki = 0 k = 1, . . . , 2`− 2

3. ∑̀
i=1

(Ai +
(2`− 1)Bi

hi
)h2`−1
i = (2`− 1)!
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This is equivalent to solving the following linear system of equations:

U2`



A1

...
A`
B1

...
B`


=



0
...
...
0

(2`− 1)!

 ,

where

U2` =


1 . . . 1 0 . . . 0
h1 . . . h` 1 . . . 1
... . . .

...
... . . .

...

h2`−1
1 . . . h2`−1

` (2`− 1)h2`−2
1 . . . (2`− 1)h2`−2

`

 .

Thus Aj , Bj are given by: 

A1

...
A`
B1

...
B`


= U−1

2`



0
...
...
0

(2`− 1)!

 . (??)

In particular, if U−1
2` =

(
V
W

)
then Aj = (2` − 1)!vj,2` and Bj = (2` − 1)!wj,2`, where V,W ∈ C`×2` and

vi,j , wi,j denote the (i, j)th entry of V,W respectively.

A.2 Proof of Lemma 4.5

Let

h∗ := arg max
hi

∣∣∣∣ ∫ 1

0

D
(2`)
M (ω + hir)(hi − hir)2`−1hi dr

∣∣∣∣
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Using the Cauchy-Schwartz inequality we have

∥∥RA(ω)
∥∥2

L2(T)
=

1

(2`− 1)!2

∥∥∥∥∑̀
i=1

Ai

∫ 1

0

D
(2`)
M (ω + hir)(hi − hir)2`−1hi dr

∥∥∥∥2

L2(T)

=
1

(2`− 1)!2

∫ 1

0

∣∣∣∣ ∑̀
i=1

Ai

∫ 1

0

D
(2`)
M (ω + hir)(hi − hir)2`−1hi dr

∣∣∣∣2 dω
≤ 1

(2`− 1)!2

(∑̀
i=1

∣∣Ai∣∣)2 ∫ 1

0

∣∣∣∣ ∫ 1

0

D
(2`)
M (ω + h∗r)(h∗ − h∗r)2`−1h∗ dr

∣∣∣∣2 dω
≤ 1

(2`− 1)!2

(∑̀
i=1

∣∣Ai∣∣)2 ∫ 1

0

(∫ 1

0

∣∣D(2`)
M (ω + h∗r)

∣∣2 dr ∫ 1

0

∣∣h∗ − h∗r∣∣4`−2
h2
∗ dr

)
dω

≤ 1

(2`− 1)!2

(∑̀
i=1

∣∣Ai∣∣)2 ∫ 1

0

(∫ 1

0

|D(2`)
M (ω + h∗r)|2 dr|τ∆|4`

)
dω

≤ 1

(2`− 1)!2

(∑̀
i=1

∣∣Ai∣∣)2∣∣τ∆
∣∣4` ∫ 1

0

(∫ 1

0

|D(2`)
M (ω + h∗r)|2 dω

)
dr

≤ 1

(2`− 1)!2

(∑̀
i=1

∣∣Ai∣∣)2∣∣τ∆
∣∣4`∥∥D(2`)

M

∥∥2

L2(T)

≤ τ4`

(2`− 1)!2

(∑̀
i=1

∣∣Ai∣∣)2

∆4`(M + 1)(2πM)4`

Similarly we get that:

‖RB(ω)‖2L2(T) ≤
τ4`−2

(2`− 1)!2

(∑̀
i=1

∣∣Bi∣∣)2

∆4`−2(M + 1)(2πM)4`

A.3 Proof of Lemma 4.6

Recall the definitions of vi,j and wi,j from Appendix A.1. From expressions (3.10) and (3.12) evaluated in
Gautchi’s paper [26], and using that M ≤ 1

∆ we have:

1. On one hand

2∑̀
µ=1

∣∣vn,µ∣∣ ≤ (∣∣∣∣1 + 2hn
∑
ν 6=n

1

(hn − hν)

∣∣∣∣+ 2

∣∣∣∣∑
ν 6=n

1

(hn − hν)

∣∣∣∣
) ∏
ν 6=n

( 1 + |hν |
|hn − hν |

)2

≤

(∣∣∣∣1 + 2τnh
∑
ν 6=n

1

(τn − τν)h

∣∣∣∣+ 2

∣∣∣∣∑
ν 6=n

1

(τn − τν)h

∣∣∣∣
) ∏
ν 6=n

( 1 + |τνh|
|(τn − τν)h|

)2

≤
(∣∣1 + 2τ(`− 1)

∣∣+
∣∣2`
h

∣∣)(1 + τ |h|
|h|

)2`−2

=
(

1 + 2τ`− 2τ + 2`
M

α

)(M
α

+ τ
)2`−2

≤ 2`
(M
α

+ τ
)2`−1

≤ Cv(`, τ)
(M
α

)2`−1
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2. On the other hand,

2∑̀
µ=1

∣∣wn,µ∣∣ ≤ (1 + |hn|
) ∏
ν 6=n

( 1 + |hν |
|hn − hν |

)2

≤
(
1 + τ |h|

)(1 + τ |h|
|h|

)2`−2

=
(

1 + τ
α

M

)(M
α

+ τ
)2`−2

≤ 2
(M
α

+ τ
)2`−2

≤ Cw(`, τ)
(M
α

)2`−2

Now we can evaluate the following expressions:

1.

∑̀
i=0

|Ai| = (2`− 1)!
∑̀
i=1

|vi,2`| ≤ (2`− 1)!
∑̀
i=1

2∑̀
µ=1

|vi,µ|

≤ `(2`− 1)!Cv(`, τ)

(
M

α

)2`−1

= CA(`, τ)

(
M

α

)2`−1

2.

∑̀
i=0

|Bi| = (2`− 1)!
∑̀
i=1

|wi,2`| ≤ (2`− 1)!
∑̀
i=1

2∑̀
µ=1

|wi,µ|

≤ `(2`− 1)!Cw(`, τ)

(
M

α

)2`−2

= CB(`, τ)

(
M

α

)2`−2

A.4 Proof of Lemma 4.4

For any tempered distribution µ supported in T, we will show that the following is true:

M∑
m=0

∣∣µ̂(m)
∣∣2 =

∥∥µ ∗DM

∥∥2

L2(T)

First:

(µ ∗DM )(ω) =

∫ 1

0

µ(y)Dm(ω − y) dy =

∫ 1

0

µ(y)

M∑
m=0

e2πim(ω−y) dy

=

M∑
m=0

e2πimω

(∫ 1

0

µ(y)e−2πimy dy

)

=

M∑
m=0

µ̂(m)e2πimω .
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Now we can show the desired equality:

∥∥(µ ∗DM )(ω)
∥∥2

L2(T)
=

∫ 1

0

∣∣ M∑
m=0

e2πimωµ̂(m)
∣∣2 dω =

∫ 1

0

( M∑
m=0

e2πimωµ̂(m)
)( M∑

m=0

e2πimωµ̂(m)
)
dω

=

∫ 1

0

M∑
m=0

∣∣e2πimωµ̂(m)
∣∣2 +

M∑
m=0

∑
k 6=m

e2πi(m−k)ωµ̂(m)µ̂(k) dω

=

M∑
m=0

∣∣µ̂(m)
∣∣2 +

M∑
m=0

∑
k 6=m

µ̂(m)µ̂(k)

∫ 1

0

e2πi(m−k)ω dω

=

M∑
m=0

∣∣µ̂(m)
∣∣2

A.5 Proof of Lemma 4.7

Let U2` be defined as in (A.1), and let

X =



A1

...
A`
B1

...
B`


, b =



0
...
...
0

(2`− 1)!


As in appendix A.1 we know that:

U2`x = b (*)

We can write (*) as:


1

h
. . .

h2`−1


︸ ︷︷ ︸

D


1 . . . 1 0 . . . 0
τ1 . . . τ` 1 . . . 1
... . . .

...
... . . .

...

τ2`−1
1 . . . τ2`−1

` (2`− 1)τ2`−2
1 . . . (2`− 1)τ2`−2

`


︸ ︷︷ ︸

L



A1

...
A`
B1

h
...
B`
h


︸ ︷︷ ︸

y

= b

y = L−1D−1b, x = diag(1, . . . , 1, h, . . . , h)y

x =

(
I 0
0 hI

)
L−1D−1b =

(
I 0
0 hI

)
L−1


0
...
0

(2`− 1)!h1−2`

 =



(L−1)1,2`(2`− 1)!h1−2`

...
(L−1)`,2`(2`− 1)!h1−2`

(L−1)`+1,2`(2`− 1)!h2−2`

...
(L−1)2`,2`(2`− 1)!h2−2`


‖x‖22 =

∑̀
i=1

(L−1)
2

i,2`(2`− 1)!
2
h2(1−2`) +

∑̀
i=1

(L−1)
2

`+i,2`(2`− 1)!
2
h2(2−2`) ≥

2∑̀
i=1

(L−1)
2

i,2`(2`− 1)!
2
∆2−4`

24



2∑̀
i=1

(L−1)
2

i,2` = ‖L−1(0, ..., 0, 1)T ‖22 ≥ min
‖w‖2=1

‖L−1w‖22 = σ2
min(L−1) =

1

σ2
max(L)

=
1

‖L‖22
≥ 1

rank(L)‖L‖2∞

‖L‖∞ ≤
∑̀
i=1

τ2`−1
i +

∑̀
i=1

(2`− 1)τ2`−2
i ≤ `(τ2`−1 + (2`− 1)τ2`−2) ≤ 2`2τ2`−1

‖x‖22 ≥
(2`− 1)!

2
∆2−4`

2`(2`2τ2`−1)
2 ⇒ ‖x‖2 ≥

(2`− 1)!∆1−2`

√
8`5τ2`−1

= C3(`, τ)∆1−2`

Finally, for u defined in (?), we have

u = ∆2`−1

(
I 0
0 Z

)
X = ∆2`−1Zx, Z = diag(z1, . . . , z`)

‖u‖2 = ∆2`−1‖Zx‖2‖Z−1‖2‖Z−1‖−1
2

≥ ∆2`−1‖ZZ−1x‖2‖Z−1‖−1
2 = ∆2`−1‖x‖2‖Z−1‖−1

2

≥ 1√
2`

∆2`−1∆1−2`C3(`, τ) = C̃3(`, τ)

We used in last inequality the following property:

‖Z‖2 ≤
√
rank(Z)‖Z‖∞

B ESPRIT Method

We provide the description of the matrix for completeness, see e.g. [12], [14].

Definition B.1 (Hankel Matrix). Let µ(x) =
∑s
j=1 ajδ(x− tj)+ bjδ

′(x− tj), aj , bj ∈ C and t = (t1, . . . , ts),
tj ∈ T, thus

mk := µ̂(k) =

s∑
j=1

aje
−2πiktj + 2πikbje

−2πiktj =

s∑
j=1

ajz
k
j + 2πikbjz

k
j

Then we define the C × C Hankel matrix as follows:

HC :=


m0 m1 . . . mC−1

m1 m2 . . . mC

...
...

...
...

mC−1 mC . . . m2C−2


where C := 2s (number of unknown coeffients).

The ESPRIT (and other subspace methods) relies on the following observations:

1. The range (column space) of both the data matrix HC (B.1) and the confluent Vandermonde matrix
Φ := Φ2C−1 2.1 are the same, namely HC admits the following factorization:

HC = ΦBΦT ,

where B := diag(a1, . . . , as, b1, . . . , bs).
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2. The matrix Φ has the so-called rotational invariance property [14]:

Φ↑ = Φ↓J

where Φ↑ denotes Φ without the first row, Φ↓ denotes Φ without the last row, and J is a block diagonal
matrix whose ith block is the 2× 2 Jordan block with the node zi on the diagonal.

Suppose we know Φ; then the matrix J could be found by

J = Φ#
↓ Φ↑

(where # denotes the Moore–Penrose pseudoinverse), and then the nodes zj could be recovered as the
eigenvalues of J .

Unfortunately, Φ is unknown in advance, but suppose we had at our disposal a matrix W whose column
space was identical to that of Φ. In that case, we would have W = ΦG for an invertible G, and consequently

W ↑ = W ↓Ψ,

where
Ψ = G−1JG,

which means that the eigenvalues of Ψ are also {zj}. Such a matrix W can be obtained, for example, from
the singular value decomposition (SVD) of the data matrix/covariance matrix. To summarize, the ESPRIT
method for estimating {zj}, as used in our experiments below, is as follows.

Algorithm 1 ESPRIT method for recovering the nodes {zj}
Require: A C × C Hankel matrix HC built from the measurements.
Ensure: Recovered nodes {zj}.
1: Compute the SVD HC = WΣV T

2: Calculate Ψ = W#
↓ W

↑

3: Set {zj} to be the eigenvalues of Ψ with appropriate multiplicities (use, e.g., arithmetic neans to estimate
multiple nodes which are scattered by the noise).
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