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Abstract

We study the problem of super-resolution of a linear combination of Dirac distributions and their
derivatives on a one-dimensional circle from noisy Fourier measurements. Following numerous recent
works on the subject, we consider the geometric setting of “partial clustering”, when some Diracs can
be separated much below the Rayleigh limit. Under this assumption, we prove sharp asymptotic bounds
for the smallest singular value of a corresponding rectangular confluent Vandermonde matrix with nodes
on the unit circle. As a consequence, we derive matching lower and upper min-max error bounds for the
above super-resolution problem, under the additional assumption of nodes belonging to a fixed grid.
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1 Introduction

1.1 Background

The problem of computional super-resolution (SR) is to recover the fine details of an unknown object from
inaccurate measurments of inherently low resolution . In recent years, there is much intrest in the problem
of reconstructing a signal modelled by a linear combination of Dirac d—distributions (e.g. H and
references therein):

pa) = a6, a; €C, 6, =8z —§;), & € (—m,7] (1)
j=1

from noisy and bandlimited Fourier measurements:

Yk = ﬂ(k) + Mk ﬂ(k) = </‘76_ikw>v k=0,1,.., M, |77k| <e. (2)

For the model (1)) we have ji(k) = >_°_, aje’*%i, and therefore the measurement vector y = {y; }2L, can

j=1
be expressed as
y="Va+neCMH (3)

where V is the (M + 1) x s Vandermonde matrix with the nodes on the unit circle:

ke 1i=1,...
V= [eZkEJ]i:O 17E

yeeey
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In order to describe the stability of this inverse problem, suppose that the nodes &; belong to a grid of step
size A and define the super-resolution factor (SRF) as ﬁ Suppose that at most ¢ < s nodes form a
”cluster” of size O(A) (to be rigorously defined below). In the ”super-resolution regime” SRF > 1 [4], 5]
showed that oy (V) scales like SRF =t and consequently the worst-case reconstruction error rate of the
coefficients of p as in from noisy measurements is of the order SRF*~e. Despite the great amount
of research devoted to the subject, there is currently no known tractable algorithm which provably achieves

these min-max bounds for all signals of interest [3].

1.2 Owur contributions

In this work we extend the methods and results of [4], [5] to the model

p=_a;o +b;o;,, (4)

j=1

where 4" is the distributional derivative of the Dirac delta. The Vandermonde matrix V in is replaced

by the so-called confluent Vandermonde matriz U, which is defined (up to normalization) as:

U:= [eikfﬂ' kei(k_l)éf]iz}):":'.7ys[.

Under the partial clustering assumptions, in Theorem and we prove a sharp lower and upper bounds
for the smallest singular value of U in the super-resolution regime, and show that it scales like SREF'2.
These bounds are proved by extending the decimation approach from [4] for the lower bound on o, (U), and
by extending the finite difference approximation approach from [5] for the upper bound, further generalizing it
to any node vector & satisfying the clustering assumptions. In addition, our proof technique for bounding the
remainder part in the upper bound of the smallest singular value can be applied to gain a slight improvement
in Proposition 2.10 in [5] by relaxing the conditions on M, A.

As a consequence, in Theorem we also obtain sharp min-max bounds of order SRF 4=1¢ for the
problem of sparse super-resolution of signals on a grid by extending the corresponding technique from
14].

Also, we show numerically that the well-known ESPRIT method for exponential fitting (appropriately
extended to handle higher multiplicities) is optimal, meaning that it attains the min-max error bounds we
established in Theorem for the recovered parameters of the signal .

In relation to prior work on the subject, in [12] the authors give a stability estimate for the more general
model (5)) with arbitrary fixed n, however assuming that the number of measurements N+1 equals the number
of unknowns. Evaluating their estimate for our model and notation, their bound is of order AM*ls%, while
ours in the same case is A*~1¢. In contrast, |13 established the bound in the super-resolution setting of a
single cluster (and off-grid nodes) to be of order SRF*e, while we derive the min-max rate SRF*~ !¢

1.3 Discussion

Naturally, our results and techniques pave the way to analyzing the general model

S n
=303 el )
j=11=0
in the clustered super-resolution regime. The applications of this model include modern sampling theory
beyond the Nyquist rate, algebraic signal recovery, interpolation and multi-exponential analysis, to name a
few (see |12]—[18] and references therein). At the same time, we believe that several recent developments on
the basic model can be utilized to the more general setting, as follows.

e Recently, [2] succeeded to establish sharp bounds for the entire spectrum of V' without requiring the
entire node set to be contained in a small interval of length 7. We believe that similar techniques
could be applied to in order to eliminate the above restriction.



e Optimal scaling of the constants in the above bounds for the spectrum of V' using harmonic analysis
techniques has been investigated in [19], and it would be interesting to extend these methods to ().

e While we obtain min-max rates for nodes on a grid, we expect to get similar rates for the ”off-grid”
model as in 3], where the node locations can be any real number. Furthermore, it should be possible to
establish component-wise bounds for the coefficients of different orders and for the nodes themselves,
as done in |12], [13], [16] for the more restrictive geometric settings of the problem.

Going back to the model , confluent Vandermonde matrices appear naturally in the perturbation
analysis of the nonlinear least squares problems [3], [13] for exponential fitting, and we expect our methods
to be applicable in this context as well.

The paper is organized as follows. In section [2| we establish some notation. In section [3| we formulate the
main results, which are proved in section [d Finally, in section [5] we present numerical evidence confirming
our bounds.

2 Preliminaries

2.1 Notation

Definition 2.1. For N € N and a vector £ = (&1, ...,&s) of pairwise distinct real nodes &; € (—m, 7], we
define the rectangular (2N 4 1) x 2s confluent Vandermonde matrix Uy (&) as

1

_117=1,...,s
Un(&) :\/ﬁ[zf ki 1]i=o,4..,2N

s.t. z; = exp(i&;).

The main subject of the paper is the scaling of the smallest singular value of Uy when some of the nodes
of &€ nearly collide (become very close to each other).

Definition 2.2 (wraparound distance). Fort € R, we denote
ltll5 = ‘Argexp(it)’ = ’t mod (—7r,77]|,
where Arg(z) is the principal value of the argument of z € C\ {0}, taking values in (—m,x].

Definition 2.3 (minimal separation). Given a vector of s distinct nodes x = (x1,...,xs) withx; € (—m, 7],
we define the minimal separation (in wraparound sense) as

A= A(x) = min ||z; — 257 .
i#j

Definition 2.4. The node vector x = (x1,...,25) C (— 5 g] is said to form a (A, p,s,t,T)- clustered
configuration for some A > 0,2 <l < s,0—1 <71 < %, and p > 0 if for each x; there exist at most £ distinct
nodes

m(J) = {Ij,k}kzl,...,rj Cz, 1< Ty <Y, Tj,1 = Tj,

such that the following conditions are satisfied:

1. For any y € x) \ {z;}, we have
A < fly—allp < 7A.

2. For anyy € =\ ), we have
ly = zillz = p-



Definition 2.5. For A >0 let M = LﬁJ and denote by Ta the discrete grid
Ta = {kA, k=-M,. .. ,M}C {_gﬂ .
Further define G := G(A) = |Ta| =2M + 1.

Definition 2.6. For A, p,s, 0, T as in Deﬁm’tion let R :=R(A, p,s,t,1) be the set of point distributions
of the form p = Z;:l a;or; + by, where t; € Ta and aj,b; € C for all j =1,...,s, while t = (t1,...,t;)
forms a (A, p, s, ¢, 7)-clustered configuration.

Definition 2.7. For fited N € N, e >0, NA <1 and u € R(A, p,s,¢,7), let

1 2N %
R N OO
k=0

where [i(k) are the Fourier coefficients as defined in .

Definition 2.8. Let A:= A(R, N,¢) be the set of functions ¢ that maps eachy € U,erBY (1) to a discrete
distribution ¢, € R(A, p,s,0,7).

Definition 2.9. For u = Zj‘:l a;dt; +b;0;, the norm ||p||2 is the discrete {2 morm of the coefficients vector:

S

liallz == (D lasl? + 16512

j=1
Definition 2.10 (min-max error). The ¢ min-maz error for the on-the-grid model is

g(RaNa 6) = inf Sup  Sup ||<)0y - MHQ )
PEALER ye BN (1)

where @, = p(y) € R.

3 Main Results

3.1 Optimal bounds for the smallest singular value
As in previous works on the subject, the main quantity of interest is the smallest singular value of Uy.

Theorem 3.1. For each s € N there exists a constant C1 = C1(s) such that for any 47A < min(p, 9—12), any
E=(&,...,8) C s%( -3, %] forming a (A, p, s, £, T)-clustered configuration, and any N satisfying

max <47rs,483> <N i
p TA

we have
Tmin(Un(€)) > C1 - (NAP

Theorem 3.2. For each s € N there exists a constant Co = Co(¢,7) such that for any € = (&1,...,&s)
forming a (A, p, s, £, 7)-clustered configuration, and any N satisfying N < i we have

Tmin(Un(€)) < Ca - (NA)* .

The proofs of the above results are given in Sections and respectively. For the lower bound, we
extend the decimation technique from [4] to the confluent setting. For the upper bound we generalize the
approach from [5] to hold for any clustered configuration &. Furthermore, our proof technique can be used
to slightly improve the condition (2.9) in Proposition 2.10 in [5] by requiring only that NA < const instead
of N3/2A < const.



3.2 Stable super-resolution of generalized spikes of order 1

In our setting, we assume that the spike locations are restricted to a discrete grid of step size A. In effect,
our results show that & < SRF*~1¢ as SRF — oo.

Theorem 3.3. Fir s > 1,2</{¢<s,e >0. Put SRF := ﬁ. Then the following hold:

1. Forany p >0, £—1 <7, and M > 7, there exists Ag = Aog(M) and K > ﬁ such that for every
SRF satisfying K < SRF < (2sM) - K and for all A < Ay, it holds that

E(R(A, p,5,0,7),N,e) < Cy ySRF" ¢

for some constant Cs ¢ depending only on s and £, where R = {u i € R,supp(p) C ﬁ( -5 g] }
2. Forany p>0,{—1<71 and SRF > 2, it holds that
E(R(A, p,s,,7),N,e) > Cr,SRF* ¢
for some constant Cy . depending only on £ and 7.

The proof is presented in Section largely repeating the arguments from [4], [5], together with the
above established bounds on oy (Un).

4 Proofs

4.1 Square confluent Vandermonde matrices

Definition 4.1. For s € N and vector z = (21, ..., zs) of pairwise distinct complex nodes |z;| = 1, we define
the square 2s x 2s confluent Vandermonde matrixz

. —1qj=1,...,s
Ug,(2) = [Zf sz 1]%:0,“.,52571

Theorem 4.1 (|20]). Let © = (21, ..., x,) be a vector of pairwise distinct complex numbers and let

n 1
b)\:max(1+\$A|71+2(1+|x/\|) Z 7)

V14N [z, — 2|
Then
n
_ 14|z, \2
1 v
< P D
[Uz @l < mox (T i)
v=1#A
Proposition 4.1. Let z = (21,...,2) be a vector of pairwise distinct complex nodes with |z;| = 1,j =
1,...,s. Denote by 0; the angular distance between z; and zj:
2
Ok =0k(2) = |Arg (i)‘ = ‘Arg(zj) — Arg(zi) mOd(—ﬂ'ﬂT]‘ .
Then
42(178) ) )
Tmin (Uzs(2)) 2 V2sm2(1—s) 2. kl;[ 05k »
J
where

v; = min 1, (1+ §Z(5jf,i)_1
2 T

k#j



Proof. By Theorem [£.1] we have

||U2_sl(z H < 22(s=1) 112]32(8 bJH|zk—z]|7 (6)

where )
b; = max (2,1 +4Z |zj — zkrl) .
P
For any |0] < Z, we have
5161 < sinfé] < 6]

and since for any z; # 2,

5 - 2| = |

)

S
’ Arg( )‘:QSin‘J—’k
Zk Zk 2

we therefore obtain -

§5j,k < |Zj — Zk| < 5j,k-

Plugging into @, we have

4 2(s—1)
omax (Us, (2)) < \/%HUESI(Z)HOO < (ﬂ) \/%fnjax b; H (5ﬂf
- k#j
and .
b; = max (2, 1+ 8 Zéﬁi)
=
This finishes the proof with ~; := bj_l. O

4.2 Proof of Theorem [3.1l
4.2.1 Overview of the proof

First we use the Decimation technique that has first been introduced in [|4]. It states that there exists a
certain blow-up factor A such that the mapped nodes {e?**s} attain "good” separation properties. Second,
for any such A of order O(NNV), we can partition the rectangular confluent Vandermonde matrix into squared
well-conditioned confluent matrices and use this partition to bound o,;, from below.

In order to use the corresponding results from [4], we introduce an auxiliary bandwidth parameter .

Definition 4.2. For N,s € N, a vector x = (21, ...,x5) of pairwise distinct real nodes x; € (— and a

bandwidth parameter 0 < Q < 2N, let £ = (&1,...,&;) where & = % Then we define

5.5

Bm)f 1
N~ V2N

. ;) . .. 77=1,...;8 .
{exp (zk#) kexp (i(k — 1)77)] c CN+1x(2s)

Un(,Q) :=Un(€) = Un( k=0,....2N

4.2.2 The existence of an admissible decimation
We can now use a key result from [4].

Lemma 4.1 (Lemma 4.1 in [4]). Let © form a (A, p,s, £, 7) clustered configuration, and suppose that 4—’;5 <

Q< 2. Then, for any 0 < § < 1, there exists a set I C [%, %} of total measure %5 such that for every
A € 1, the following holds for every x; € x:



A -
Py = dale 2 A8 > 55 vy o\ {ay)

—¢

52

1 .
Ay — Azjlz > T Yy € sc\ac(J)

Furthermore, the set I¢ := {Q Q} \ I is a union of at most % [4%-‘ intervals.

2s7 s

Fix ¢ = % and consider the set I given by the above Lemma. Let us also fix a finite and positive integer
N and consider the set of 2N + 1 equispaced points in [0, 29):

Q
Py = {kﬁ}k:o,...,QN'

Proposition 4.2. If N > 2s3 {%—‘ , then Py N1 # 0.

Proof. Exactly as the proof of Proposition 4.2 in [4]. O
We are now in a position to extend the main result from [4] to the confluent setting.

Theorem 4.2. There exists a constant C = C(s) such that for any x forming a (A, p,s, ¥, 7)-clustered

configuration, and any 0 satisfying

ams < TS
p — T TA

we have 0
Omin (UN(a:, Q)) >C- (AQ)%f1 whenever N > 2s° {4—‘ )
s

Proof. Similarly to the proof of theorem 3.2 in [4], for any subset R C {0,...,2N} let Uy, g be the submatrix
of Un containing only the rows in R. In particular, if {0,...,2N} = R1U...UR, then

p

ohin(UN) =Y 0in(Un.r,).

n=1

By Lemma and Proposition there exists m € N, 0 < m < 2N such that

with
. 1 -
25 (B 2 [luj —urlly = 5-(AQ) Vai € 20\ {z;};

v .
WZHuj_UkHﬁ*Eﬁ kaex\w(”.

Since A < % we conclude that 2ms < 2N.
We will divide Uy to m squared matrices of size 2s x 2s in the following form:

Ro={0,m,...,(2s — 1)m},
Ry ={l,m+1,...,(2s = 1)m + 1},

Ry1={m-12m—1,...,2sm —1}.



For k = 0,1,...,m — 1 each Uy g, is a square confluent Vandermonde matrix, and it can be checked by
direct computation that

Unp,(V) = —=

where v = { exp (iuj)}j:1 and z = { exp (z':rj%)}j:17 with
D(z,m) = diag(1,...,1,mz"" ... mz""1)
[2f ... 0 7t 0 ]
T(z,r) = 0 ... =z 0 rzf=t
R I R | N 0
0 ... 0 0 ... oz |

Recall the well-known formula for a block matrix inverse.

Lemma 4.2 (e.g. [21]). Consider the block upper triangular matriz
A B
0 D|-°
It is invertible if and only if both A and D are invertible, and its inverse is given by

A"t —A'BD!
0 D!
Lemma 4.3. Forr €7, s,m € N, m # 0 and vector z = (21, ..., 2s) of pairwise distinct complex nodes with
|zj] =1 we have
r

HP_l(z,r,m)Hoo: +1,

where
P(z,r,m) = D(z,m)T(z,r) .

Proof. By direct computation,

(27 ... 0 r2iTt L 0

d ,Z:T 0 rzrl’l A B
P(z,r,m) = 0 ... (; mzi Tl 6 :[0 C]

|0 ... O 0 s mzltmTl

where
A= diag(#],...,2]),  B:=diag(rz{ "' rzt Y,

geeey s

C = diag(mz]"T" "1 .. mzl T,

By Lemma [£.2] we get
(A —alBC?

Pil(zaram) - 0 C—l ’



where —A~!BC~! = diag(— = (Hm) —%z;(rer)). Thus

ey

r

Tl =1y

||P*1(z,r, m)Hoo = max |Zk_r| + ‘

Now, let us take a look at ; from Proposition

'yj—mln( Z(Sgk 1),

where
5j,k = (5j’k(lj) .
We will show two properties:
1.
25 1 2756 2(s — £)s? < 25l + 2(s — £)s2AQ
Ik = T - AQr
k#j
AQn?
(14= 26 I T

> 5 —
iy AQﬂ' + 1654w + (s — £)sAQ)

Given that AQ < 22 < s, we have

2

(1 1> AQ u > AQ i > AQ -
(+2 ; m3s+ 16s(lm + (s — £)sms) — w25+ 16s(0 + (s — €)s2) — 725 + 1652 + 16s*
8 1y -1
= (1+— > 60 = k(s)AQ, (P1)
Py
where -

k(s) =

725 + 1652 + 1654

2. Using 2 </ < s and AQ7 < 7ws we get

0+33 507 = (1 HGRghe-n+ de-o))

oy
_ 8 257r(€ -1+ (s—0O)TAQ 16sm(¢ — 1) 4+ 8(s — £)TAQ
> =
- Z Ok 21 + TAQm ) =1+ TAQR?
=

~ TAQR? 4+ 16s7(0 — 1) 4 8(s — £)TAQ - TAQ(72 +16(4 — 1) +8(s — £)) -

B TAQT? - TAQT? -
8 _ 1

k#j
-1 3 11
=1 —mln( (1+= Zajk J=+=Y e (P2)

k#] k#j



Using Proposition and Lemma [£.3] we are going to bound from below the smallest singular value of
the square confluent Vandermonde matrix:

Omin(UN.R,) = Jmin(\/%Uzs(u)D(z,m)T(z,r)) > Omin (Uzs (1)) (V2N V25| P71 (2, 7, m)Hm)ﬂ

1 4 2(1—s)
> - 1+
> (z)

(e

for some constant &(s). Ahead of the last step we used , properties (P1)), (P2) and the fact that 1 < £ < s.
Finally, we can bound from below the smallest singular value of the rectangular confluent Vandermonde
matrix:

r

m

-1 s
: 2
) a5
J
,

- >1(AQ)2“

_2’%2(5) 2(20—1
> N (AQ)2(26-1)

m—1
Uilin(UN) Z <1 +

%

_ AN 5 QN _ N
We used the fact that m = 5~ > 575 = 5.

To summarize, the final result for Theorem is

Omin(Un (2, Q)) > C1(s)(AQ)2L | Cy(s) := R(S) O
( N( )) = 1( )( ) 1( ) \/ﬁ

Proof of Theorem[3.4} Similar to [4, Corollary 3.6]), for Q := & and any & C (- Z,
(A, p,s,L,7)-clustered configuration with the conditions of Theorem we have x = %5

which forms a (A, D, 8, ¢, T)-clustered configuration with A= s2A and j := s2p.
Clearly, 47A < s%2p = j and also

Q 2Q) Q Q
Ns?=N>4s = —>1 = —>|=| = N=Qs*>2s3|— |,
4s 4s 4s 4s

thus the conditions of Theorem are satisfied for x, 2, p, A, 7. Therefore

20—1
Omin (UN (§)) = Omin (Un (2, 2)) > C - (AQ* 7! =C- (gm) —C- (AN

finishing the proof of Theorem [3.1 O

10



4.3 Proof of Theorem [3.21

Definition 4.3. For M,s € N and a vector w = (w1, ...,ws) of pairwise distinct real nodes w; € T, let Oy
denote the (M + 1) x 2s confluent Vandermonde matriz

i | 0 0
21 ...  Zs 1 1
2 2
dylw)=|* - % 2z 2z ’
Mo M MM MM

and let Vi denote the (M + 1) x 2s pascal Vandermonde matriz

1 .01 0 . 0
21 ... Zs 2Tz - 2mizg
2 2 ;2 ;2
Viw)= |2 - % 4dizg e Amizs ,
A0 M M2miM L 2MmizM

where z; = exp(—2miw;) and T is the periodic interval [0,1).
By direct computation we get
Vv =®yH
with H = diag(1,...,1,2miz, ..., 27izs).
Inspired by the proof of Proposition 2.10 in [5], we will consider w = _L% + 3 where £ is a (A, p,s,0,7)-
clustered configuration and a suitable vector u in order to obtain an upper bound for

(0]
Omin(Pp(w)) =  min M
weugo [l

Put a := MA, assume that M < % and let w = {wj};-1 be defined w.lo.g by w; = 7;7; where 71 = 0,
7; < Tjy1, Te < 7 for 1 < j <, while {w;}7,, are arbitrary.

Definition 4.4. We consider the vector u € C%* defined by

o\ 21 .
a2 ’
Usyj = i 2miz; B; 1<j<¢
Uj = Usgy; =0 otherwise ,

where z; := exp(—2miw;) and A;j, B; are as given by equation from appendiz .
-1
Let @) := uj, Usqj = %usﬂ» for 1 < j < £ and 4; = tsy; = 0 otherwise. To estimate ||Pul2, we
identify u with the discrete distribution

¢
W= Zﬂj(s.,—j% + ﬂ8+j62_j%. (8)
j=1
We also define a modified Dirichlet kernel Dy, € C°°(T) by
M
Dy (w) := Z exp(2mimw) . (9)

m=0

11



Lemma 4.4. For p and Dy; as defined in , @, the following is true:

M
> (m)? = | * Dayl|7zm-
m=0

The proof of the above lemma is in appendix [AZ4] Thus, observe the following:

M M
1@nrull3 = [[VarH )3 = [[Vacalls = D [(Vari),, | = Y [@(m)]* = [l % Dag72ry.
m=0 m=0

As shown in appendix [A7T] we see that for all w € T

(1% Dar)(w) = Xé: (ajDM (w - 77;) + s+ Dy (w - ?\?))

(10)

where R4(w) and Rp(w) are written explicitly in appendix
By the Bernstien inequality for trigonometric polynomials [22], we have

1D Loy < @ M) | Dadll g2y = VM + D) (27 M) (11)

Lemma 4.5. For Rs(w) and Rp(w) as defined in appendix in the appendiz, we have

)

o0 20 ¢
o 20 T
1R A(W)||2(m) < <M> VM + 1(27 M) Q-1 ; |A;

— 4

20—1 9
IRe)liom < () VATFIERMP s Y|

Lemma 4.6. For 1 <i</{ and A;, B; as defined in appendix we can bound the following expressions
as follows:

4 20—1
Slal<eaen(t)

=1

4 20—2
> |Bi| < %(&r)(f) :
=1

The proofs of Lemmas and are shown in appendix and respectively.
Combining and Lemmas and we get:

20—1
(07 20—1
% Dol < () <|D§w Mz + 1R s + ||RB<w>||Lz<T>)

M (12)
< VM +127a)* (1 + C(¢,7)270a) .
The proof of the following lemma is in appendix
Lemma 4.7. Let u € C* be defined by equation (¥) from Definition then
~ (2¢—1)!
||u||2 2 03(8, T) = W (13)

12



Combining and we get:
[ @arulls _ VI +T(2m0)* (1 + Ct,7)2ma)
Jull -~ Cs(t,7)

Proposition 4.3. For N,s,d € N and vector £ = (&1, ...,&s) of pairwise distinct real nodes &; € (—m, m|, let
Don be as in definition[4.3 Then, the following decomposition holds:

Don(n) == \/;—N(I)2N(_£27T + ;) = \/%Elqu (_é%)]% = E\UNn(§)Es

< CA'(K7 WM +1(2ra)? 1.

where
E, = diag(1, 6727”%, e eizﬂiM%)stgs and FEy = diag(1,...,1, 627”%, ce 627”%)29@5 .
Therefore, on(n) and Un (&) are unitary equivalent and thus have the same singular values.

Finally, by Proposition [£.3] and setting M = 2N we get:

3 1 _ _
and
= 3 1 N 20-1
Imin(Un (§)) = Tmin (‘1’21\! <_27T T 2)) = Omin(P2n (w))) < Co(f, 7)(2ma)™ ",

completing the proof of Theorem 3.2}

4.4 Proof of Theorem [3.3]
4.4.1 Notation
Definition 4.5 (Pascal-Vandermonde matrix). Fort = (t1,...,t;) € R'** and z; = €'’ let
H := H(t) = diag(1,...,1,—4z1,..., —i2s)asx2s, Pn(t) =Un(t)H(t).
Every discrete distribution pu = ijl a;or; +b;0;, € R can be identified with a sparse vector z,, € C%¥ c
C2¢, where G = G(A) =2M + 1 and M = | % | from deﬁnition llzllo = #(i|z; # 0),

a; tj:(—M—Fi—l)AEt/\lSigG
()i =4 —ib; t;=(-M+i—1-G)Act A G+1<i<2G (14)

0 otherwise

for j=1,...,2s and

(C?ZCEA )= {:v,, v ER(A, p,5,4,7),, € C* ||z, |0 < 25 and x,, as defined in } .

1p,8,,

A direct computation shows that for every w € R
S
fi(w) = Z aje™t —iwbje™t.
j=1

Thus we can write R
(—M)
(=M +1)
: = (Fo F&)zu,
AM) )

where F; = [¢%98]7~ 711 is a G x G matrix and Ff, = diag(—M, ..., M) Fe.
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Corollary 4.1. Assume that 2N < M, let Fon 11 and Fyy_ | be the 2N +1 rows {M,...,M + 2N} of Fg
and Fl, respectively. In addition, let Fon = (Font1 Finiq). Then,

Fon®, = V2N Pyv, = V2NUyw, = (i(0), ..., s(2N)T

where
ay ai
Qg g
Vv, = w, = Hv .
s b1 ’ i © 722’11)1
bs —12,bs

Definition 4.6. For N € N and y € C?N*t1, et the norm

1 2N
2 . L 2
Il = 5 2

4.4.2 Proof of the upper bound

As in [5], we choose any ¢ such that ¢, € {v : ||[Fanz, — yl2,x < }. Note that z, satisfies the same
constraint ||Fonz, — yl|l2,n < &, which means that such ¢, exists. Then we have:

€(R7 N7E) S sSup sup H()O’l/ - /’(‘”2
HER yeBY (1)

By Lemma 4.7 in [4] there exists Ag(M) such that for all A < Ay and any z, € (C?RCfA p.s,0,)0 We have

t:= Supp(‘ﬂy - iu’) € R(Aa p,7 5/76177—/)

2G
= ley — Ty c (CR(A,p’,S’,Z’,T')

where s’ < 2s, ¢/ <20, 7/ > 1 and p’ = 8sM7'A. In addition we have p’ < £ < L < S% and in particular,

452
47 A < min(p/, 5}2) = p/, therefore, by applying Theorem we obtain that for K := ;S// and all N
satisfying
s’ 47s’ 3 s’
— = — 457 ) <N
max<2SM7_,A o s > - T TA

we have K < ﬁ < (2sM)K and:

2 ’”BN% Yl = Fave, y””’ | Fon (2, — 2,)||2,n
lpy — pll2 — ey — pll2 - oy — pll2
_ PN @) (v, —v)lla _ IUN@)(H (#)ve, — H(E)va)l2
[ve, — vall2 [H=1(t)(H (t)vy, — H(t)v,)|2

[Un () (we, — wp)ll2
~H @) l2llwg, — w2

> Co o (NAY 71 > Caune(NAYE O

> omin(Un (1))
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4.4.3 Proof of the lower bound

Pick any (A, p, 2s, 2¢, 7)-clustered configuration ¢ = (t1,...,tss). Let w € C** be a unit norm singular vector
of Un(t) that corresponds to its smallest singular value, put v = H~!(t)w and define the corresponding
= Z?il(v)zj_l@j +(v)2;6;, € R(A, p,2s,2¢,7) (so in fact according to our previous notation w = w,, and
v =wv,). By this construction, we obtain

0 := Tmin(Un (supp(p) = [Unwpllz = [Pxvpllz = [ Fanayllzn -

Write t as a disjoint union of two (A, p, s, £, 7)-clustered configurations t;, o, implying that pu = u; — ps
where supp p; = t; and p; € R(A, p,s,¢,7) for i = 1,2. Let x; = Sx,, € (C%CEA’F)’S%T), for i = 1,2, so that
Sx, =11 — T2

Now suppose we are given the data:

Yy = Fonty = ]}2N£E2 + fZN(«Tl — Z9).

Let e := —2=Fon(z1 — 22) € C?N+1, The previous equations imply:

~ £~
lellz = IF2n (21 = z2)ll2v = — [ Fonaullzn = e
For an arbitrary ¢ we have

“Nwllz = = 1zl
= —||lw = —||lx
o lpli2 T g ndi2

Qo

= |lz1 — x2|l2
<oy = xg, ll2 4 |22 — 24, |2

<2 ~
< 2 max [lzx — 2, [|2

and so by definition of £ and Theorem we conclude that for SRE > 2 it holds

9 9
E(R,N,e) > inf - > = .
)= s liee, — ol 2 55 = o0 vayet

5 Numerical experiments

In order to validate the bounds of Theorems and we computed opin(Uy) for varying values of
A, N, ¢, s and the actual clustering configurations. As before, we put SRF := ﬁ. We checked two clustering
scenarios:

1. Figure [la]- A single equispaced cluster of size £ in [~F, =% + A] with the rest of the nodes equally
spaced and maximally separated in (=5 + (A, J].

2. Figure|lb[- A multi-cluster configuration with the first equispaced cluster of size 1 in [-5, =5 4 {A]
and the second equispaced cluster of size £ in [§ — (oA, T] with the rest of the nodes equally spaced
and maximally separated in (=5 + (1A, 5 — (2A).

15



Single cluster s =7, { = 3

10 E

100

10 10
SRF

(a) Single Cluster

Multi cluster s =17, ¢, =2, £, =3

10

SRF
(b) Multi Cluster, £ = {max

Figure 1: Decay rate of oy, as a function of SRF'. Results of n = 1000 random experiments with randomly
chosen A, N are plotted versus the theoretical bound SRF 1=2¢
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We also show in figure |2 that the vector u defined in @ is indeed an approximate minimal singular vector,
a(w)ull2

by plotting the Rayleigh quotient I Tull2
the confluent Vandermonde matrix as in Definition and w is a single-cluster equispaced configuration.

versus the minimal singular value oy (P (w)), where @)y is

Single cluster s =6, £ = 3

@ Tmin
® B yrul|2

[]]2

. § R 1

10 10" 10
SRF

Figure 2: The Rayleigh quotient of the vector u defined in (ED versus the minimal singular value of ®,;. We
can see that they scale the same and differ by a constant.

Finally, in order to validate the bounds of Theorem [3.3] we computed the £ min-max error £ as in
Definition and also the 2 errors of estimating the nodes &, and the coefficients &,, & of the worst-
case discrete distribution p defined by assuming s = £. We used the ESPRIT (Estimation of Signal
Parameters via Rotation Invariance Techniques) [23] method for recovering the nodes {t;}%_; (see more
about this method in appendix. ESPRIT is considered to be one of the best performing subspace methods
for estimating parameters of model with white Gaussian noise. Originally developed in the context of
frequency estimation , it has been generalized to the full model in . Recently it has been shown
that if the noise level € in the measurements is sufficiently small, the error committed by ESPRIT for
estimating the nodes of the simple model is nearly min-max . Consequently, we conjecture the same
near-optimal behaviour in the model @) In order to recover the coefficients a;, b; we solve a linear system
of equations by the Least Squares method:

min || Uy (€)v, — yll2

where §~ are the recovered nodes. Note that we prove the theoretical bound to the on-grid model however the

17



ESPRIT algorithm recovers the nodes without taking the grid assumption into account. We have checked
two cases:

1. Figure |3al- A single equispaced cluster of size s = ¢ = 2 with error e = 10712,
2. Figure [3b]- A single equispaced cluster of size s = ¢ = 3 with error ¢ = 107'2.

Our results suggest that the ESPRIT method might indeed be optimal, meaning that it attains the min-max
error bounds we established in Theorem [3.3] for the recovered parameters of signal ().

Single Cluster s =2,/ =2, e = le—12
10 _ ................ i L et .............. T i ......
: ye, =6.8491%2+-0.2186 e WAL 4

Y, =0.8501xx4-9.94
=6.84472+-9.2150

18



Single Cluster s =3, { = 3, e = le—12

10° F e

| | .
10t F ye: =10.239%24-10.8675 | | | &

o ye =11.0189424+-6.6399  * .

| ek | o ‘W"%’»
' E ys =10.2308+-4-7.489 il e 3’?

s '=11.Q178*¢+-6.6337

SRF
(b)

Figure 3: Accuracy of ESPRIT. Results of n=500 random experiments with randomly chosen A and fixed
N are plotted versus the theoretical bound SRF*~1e.

Note that all figures are in logarithmic scale.
The code for the above experiments is available at https://github.com/Gnflu/SR-of-conVan-sys.git|

A Computations for Theorem

A.1 Finite difference coefficients

We seek approximation of the form:

¢
DG (w) ~ Z A;Dr(xi) + BiDly(w;) = Sa,p(w)

i=1

where
«
T =w — TA, A:M ,
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https://github.com/Gnflu/SR-of-conVan-sys.git

and
¢ ¢

Sap(w) =Y AiDy(x:) + BiDjy(xi) = > A;Dy(w + 7 — w) + BiDiy(w + 2 — w).

=1 =1

Let h; := z; —w = —7;A = 7;h, h = —A. Then by Taylor expansion of Dys(w + h;) and using the integral
form of the remainder we have:

: — 5\4 it Dy, 0 t) 20-1
Sap(w ZAZ<]€Z I /w 2£_1)'(w+hift) dt)
202

B (b1) wthi (20
+Bl< Z ( ) +/w w(w + hy — )22 dt)

By the change of variable t = w + h;r we have dt = h;dr and therefore

20— lD(k) £ 20— 2D(k+1)
Sute) = 3 PAEED (S + 3 T (5
k=0 k=0
1
—— N4, DBY , o p\20-1p
+(2£—1)!; /0 a (@ A+ hir)(hy = hir)* " hy dr

¢ 1
1 20 _
g 08 [ DR ) ) Ehdn
=1

= P(w) + Ra(w) + Rp(w),

where
20— lD(k) 20— D(k+1)
Plw)= > 2L ZAhk PP e ZBhk
k=0 k=0

(24) 20—1
Ra(w) = z—1l§ A/O DGO (w + hir)(h; — hir)* " hidr |

(2f) _ 2(0—2
Rp(w) = %_Q'E B/O D3 (w + hir) (hy — hir)?2h, dr-.

We seek Aj,...,Ap and By,..., By so that P(w) = Dﬁe_l)(w), thus the following equations should be
fulfilled:

1.
14
> Ai=0
=1
2.
d kB;
> (4 h)hk_o k=1,...,20—2
=1
3.

> (A + w)h?“ = (20— 1)!

20



This is equivalent to solving the following linear system of equations:

N 0
A
UQZ Bf = ' )
: 0
. —1)!
B, (2¢—-1)!
where
1 1 0 0
hy ... he 1 1
Uz = : ; : :
R R (20-1)R3T? L (20— 1R
Thus Aj, B; are given by:
N 0
A B :
Bf = U221 . (%)
0
i —1)!
B, (2¢ —1)!

In particular, if Uy,' = (131//) then A; = (20 — 1)lv; 2 and B; = (20 — 1)lw; 2, where V,W € C**?¢ and
v;.5, w; ; denote the (¢, 7)th entry of V, W respectively.

A.2 Proof of Lemma
Let

1
hy := arg max / D](\Ze) (w + hir)(hs — ) hy dr
hi 0

21



Using the Cauchy-Schwartz inequality we have

2

2 1
1RAN 2 = r =1y

4 1
ZAi/ D(%)(w—i—hr)(h —hr)% Lh,; dr
i=1 0

L2(T)
2

1) ¢ L
:ﬁ/0 ;Ai/ D(%)(w—ﬁ-hr)(h —hr)% 1h drl dw
2
<Z‘A ‘) / ‘/ D (w4 har) (he = hor)? " hy dr | dw
< 1 |2<Z‘A ‘) (/ ’D(% W+ h,r ’ dr ‘42—2hzdr> "
(2¢0-1) O
Al —
et ([t
E_l (2¢-1)2 (Z‘A ‘) ‘ HD 2€)||L2(T
2£_1 @2—ne (Z\A |> AY(M + 1)(2rM)¥

Similarly we get that:

F40—2 ¢ 2 B
||RB(OJ)||2L2(T) S W(Z ’Bz|) AM 2(M+ 1)(27TM)4€

i=1

A.3 Proof of Lemma [4.6

Recall the definitions of v; ; and w; ; from Appendix From expressions (3.10) and (3.12) evaluated in
Gautchi’s paper [26], and using that M < 1 we have:

1. On one hand

Z|U”“|< '1+2h Z i —h ‘Z Tow — o) )H(|}1L+_|hh|>
('1+2¢nhz — ‘*2‘27—7,, )H 1+_T;Vh|h|>

#

1 arte— ] [21) (L)

<
(1 ol —2r + 26—) (% + 7)%_2

<2

(S
/—\
_|_
[
(’\
,_.
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2. On the other hand,

iwmu\ < (1+|hn) Vl;[n (m)z <(1 +T|h|)(1 +h7||h|)2”
_ (1+Tg)(%+7)%72§2(%+7)2£72

< Cw(g’ 7—) (%>2572

Now we can evaluate the following expressions:

1.
4
> A = (20— 1)! Z|vm|< 20 —1)! ZZWM
=0 i=1 p=1
20—1
<020 —1)IC, (¢, 7) <M>
«
M 20—1
CA@W)((})
2.

14

> IBil = (2t —1)! Z|wm|< (20 —1)! ZZ\wW\

=0 i=1 p=1

S“%—Uwhwﬂ(f)%4

=Cmaﬂ(M)%4

[e%

A.4 Proof of Lemma [4.4]

For any tempered distribution g supported in T, we will show that the following is true:

M

=

2 2
(m)|” = | = DMHL?(T)

First:
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Now we can show the desired equality:

1 M 1
H M*DM>(W)H12(T) :/ ’ Z eQﬂ'imwﬂ(m)‘de :/ Z eZTrZ'mWA Z e27mmw

/ Z |627mmwA ‘ + Z Z eQTrz m— k)wA )ﬂ(k) dw
m=0 k#m
1
| + Z Z / 2mi(m—k)w dw
m=0 m=0 k#m
M
. 2
=) |am)|" O
m=0
A.5 Proof of Lemma [4.7]
Let Uy be defined as in (A.1]), and let
" 0
_ | A _
X=|5] b= 5
: 0
5, (20—1)
As in appendix we know that:
UQ@CE =b (*)
We can write (*) as:
Ay
1 1.1 0 0 :
h T1 . Te 1 . 1 AZ
. . . ) B, | =0
: : : : 3
RN -0 L @2e-n ) |
D L %
——
y
y=L"'D7 ', x=diag(l,...,1,h,...,h)y
(L‘l)l,%(% —1)!pt—2%¢
0 :
I 0,15 (I O) ~1 : (L) 00(20 = 1IR3
= L'D b= L : _ |
(0 h[) 0 hI 0 (L) 1 20(20 — 1)1022
(2¢ — 1)!h1—2¢ :
(L*1)2€,2€(2€ —1)1p2=2%¢
‘ , 20
cl2 = (L7, (20 — 1)1Pp2(=20 4 20— 1)1?p2(220 > 20— 1)1PAZ
2 7,20 £+z 20 z 24
i=1 i=1 i=1
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1 1 1
LY, =750, ..,0, 7|2 > min ||L  w|?=02, (L) = - >
2 (L e = 127 V'l 2 mmin 1750l = owin L) = 237y = 2R 2 rank(D)T]E

L 0
Lo < 37271 43 (20— )72 < 0P (20— 1)772) < 20272
=1

i=1

(20 — 1)1PA2-4
20(20272¢-1)?

(2¢ —1)1A1—2¢

I3 > = [lzfls > = C3(6, ) A

Finally, for u defined in (), we have

u=A*"1 <é %) X =A*"1Zz, Z=diag(z,...,2)

0— — 1=
lullz = A7 Za ]| 27 21275
> A ZZ7 o 27 = AP el 271

1
>

T V2t

We used in last inequality the following property:

1Z]l2 < V/rank(Z)|/Z]|

ATIAT Oy (0, 7) = Ca (0, 7)

B ESPRIT Method

We provide the description of the matrix for completeness, see e.g. [12], [14].

Definition B.1 (Hankel Matrix). Let u(z) = >.°

j=1 ajé(z—tj)+bj5’(x—tj), aj,bj ceCandt= (tl, ... ,ts),
t; €T, thus

s S
= (k) = Zaje_QMkt-7 + 2mikbje 2Tkl = Zajzf + 2mikb;2¥
j=1 j=1

Then we define the C' x C' Hankel matriz as follows:

mo mq PN mo—-1
mi mo N mgc
HC =
mc-1 Mmc ... M2Cc-2

where C := 2s (number of unknown coeffients).
The ESPRIT (and other subspace methods) relies on the following observations:

1. The range (column space) of both the data matrix Ho (B.1]) and the confluent Vandermonde matrix
D= Py_q are the same, namely Hc admits the following factorization:

He = dBo7T |

where B := diag(as,...,as,b1,...,bs).
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2. The matrix ® has the so-called rotational invariance property [14]:
ot =@ty

where ®' denotes ® without the first row, ®¥ denotes ® without the last row, and J is a block diagonal
matrix whose i*® block is the 2 x 2 Jordan block with the node z; on the diagonal.

Suppose we know ®; then the matrix J could be found by
— &* T
J=e7®

(where # denotes the Moore-Penrose pseudoinverse), and then the nodes z; could be recovered as the
eigenvalues of J.

Unfortunately, ® is unknown in advance, but suppose we had at our disposal a matrix W whose column
space was identical to that of ®. In that case, we would have W = ®G for an invertible G, and consequently

Wt =wtw,
where
v =G"1JG,

which means that the eigenvalues of ¥ are also {z;}. Such a matrix W can be obtained, for example, from
the singular value decomposition (SVD) of the data matrix/covariance matrix. To summarize, the ESPRIT
method for estimating {z;}, as used in our experiments below, is as follows.

Algorithm 1 ESPRIT method for recovering the nodes {z;}

Require: A C x C' Hankel matrix He built from the measurements.
Ensure: Recovered nodes {z;}.
1: Compute the SVD Hg = WXV
2: Calculate ¥ = WfWT
3: Set {z;} to be the eigenvalues of ¥ with appropriate multiplicities (use, e.g., arithmetic neans to estimate
multiple nodes which are scattered by the noise).

References

[1] D. Donoho, “Superresolution via sparsity constraints,” SIAM Journal on Mathematical Analysis,
vol. 23, no. 5, pp. 1309-1331, 1992.

[2] D. Batenkov, B. Diederichs, G. Goldman, and Y. Yomdin, “The spectral properties of Vandermonde
matrices with clustered nodes,” Linear Algebra and its Applications, vol. 609, pp. 37-72, Jan. 2021,
ISSN: 0024-3795. DOI1: [10.1016/j.1aa.2020.08.034,

[3] D. Batenkov, G. Goldman, and Y. Yomdin, “Super-resolution of near-colliding point sources,” Infor-
mation and Inference: A Journal of the IMA, vol. 10, no. 2, pp. 515-572, Jun. 2021. por: [10.1093/
imaiai/iaaa005.

[4] D. Batenkov, L. Demanet, G. Goldman, and Y. Yomdin, “Conditioning of Partial Nonuniform Fourier
Matrices with Clustered Nodes,” SIAM Journal on Matriz Analysis and Applications, vol. 44, no. 1,
pp- 199-220, Jan. 2020, 1SSN: 0895-4798. DOI: [10/ggjwzb.

[5) W. Li and W. Liao, “Stable super-resolution limit and smallest singular value of restricted Fourier
matrices,” Applied and Computational Harmonic Analysis, vol. 51, pp. 118-156, 2020, 1ssN: 1063-5203.
DOI: |10.1016/j.acha.2020.10.004.

26


https://doi.org/10.1016/j.laa.2020.08.034
https://doi.org/10.1093/imaiai/iaaa005
https://doi.org/10.1093/imaiai/iaaa005
https://doi.org/10/ggjwzb
https://doi.org/10.1016/j.acha.2020.10.004

[15]

[16]

[17]

[18]

[19]

E. J. Candeés and C. Fernandez-Granda, “Towards a Mathematical Theory of Super-resolution,” Com-
munications on Pure and Applied Mathematics, vol. 67, no. 6, pp. 906-956, Jun. 2014, 1sSN: 1097-0312.
DOI: |10.1002/cpa.21455.

L. Demanet and N. Nguyen, “The recoverability limit for superresolution via sparsity,” arXiv preprint
arXiw:1502.01385, 2015. arXiv: |1502.01385.

M. Hockmann and S. Kunis, “Sparse super resolution is Lipschitz continuous,” arXiv:2108.11925 [cs,
math/, Aug. 2021. arXiv: 2108.11925 [cs, math].

P. Liu and H. Zhang, “A Theory of Computational Resolution Limit for Line Spectral Estimation,”
IEEFE Transactions on Information Theory, vol. 67, no. 7, pp. 4812-4827, Jul. 2021, 1SSN: 1557-9654.
DOI: 10.1109/TIT.2021.3075149.

M. Petz, G. Plonka, and N. Derevianko, “Exact reconstruction of sparse non-harmonic signals from
their Fourier coefficients,” Sampling Theory, Signal Processing, and Data Analysis, vol. 19, no. 1, p. 7,
May 2021, 1SSN: 2730-5724. DO1: |[10.1007/s43670-021-00007-1,

A. Cuyt and W. Lee, “How to get high resolution results from sparse and coarsely sampled data,”
Applied and Computational Harmonic Analysis, Oct. 2018, 1sSN: 1063-5203. DOI: [10/ggb5cv.

D. Batenkov and Y. Yomdin, “On the accuracy of solving confluent Prony systems,” SIAM J. Appl.
Math., vol. 73, no. 1, pp. 134-154, 2013. DOI: |[10.1137/110836584.

D. Batenkov, “Stability and super-resolution of generalized spike recovery,” Applied and Computational
Harmonic Analysis, vol. 45, no. 2, pp. 299-323, Sep. 2018, 1SsSN: 1063-5203. DOI: [10.1016/j . acha.
2016.09.004.

R. Badeau, G. Richard, and B. David, “High-resolution spectral analysis of mixtures of complex expo-
nentials modulated by polynomials,” IEEFE transactions on signal processing, vol. 54.4, pp. 1341-1350,
2006.

D. Batenkov and Y. Yomdin, “Algebraic Fourier reconstruction of piecewise smooth functions,” Math-
ematics of Computation, vol. 81, pp. 277-318, 2012. DOI: |10.1090/S0025-5718-2011-02539-1.

D. Batenkov, “Complete algebraic reconstruction of piecewise-smooth functions from Fourier data,”
Mathematics of Computation, vol. 84, no. 295, pp. 23292350, 2015, 1SSN: 0025-5718, 1088-6842. DOI:
10.1090/S50025-5718-2015-02948-2.

A. Sidi, “Interpolation at equidistant points by a sum of exponential functions,” Journal of approxima-
tion theory, vol. 34, no. 2, pp. 194-210, 1982, 1SSN: 0021-9045. DOI: [10.1016/0021-9045(82) 90092-2.

R. Badeau, G. Richard, and B. David, “Performance of esprit for estimating mixtures of complex
exponentials modulated by polynomials,” IEEFE transactions on signal processing, vol. 56.2, pp. 492—
504, 2008.

D. Batenkov and G. Goldman, “Single-exponential bounds for the smallest singular value of Van-
dermonde matrices in the sub-Rayleigh regime,” en, Applied and Computational Harmonic Analysis,
vol. 55, Nov. 2021, 1SSN: 1063-5203. DOI: |10.1016/j .acha.2021.07.003. [Online|. Available: https:
//www.sciencedirect.com/science/article/pii/S1063520321000609 (visited on 08/05/2021).

W. Gautschi, “On inverses of vandermonde and confluent vandermonde matrices,” Numerische Math-
ematik, vol. 4.1, pp. 117-123, 1962. [Online|. Available: https://doi.org/10.1007/BF01386302.

Roger A. Horn and Charles R. Johnson, Matriz Analysis, 2nd ed. New York: Cambridge University
Press, 2013.

S. N. Bernstein, “Sur 'ordre de la meilleure approximation des fonctions continues par les polynomes
de degré donn,” Mémoires publiés par la Classe des Sciences de I’Académie de Belgiqu, vol. 4, 1912.

T. Kailath and Richard H. Roy III, “Esprit—estimation of signal parameters via rotational invariance
techniques,” Optical Engineering, vol. 29.4, pp. 296-313, 1990.

27


https://doi.org/10.1002/cpa.21455
https://arxiv.org/abs/1502.01385
https://arxiv.org/abs/2108.11925
https://doi.org/10.1109/TIT.2021.3075149
https://doi.org/10.1007/s43670-021-00007-1
https://doi.org/10/ggb5cv
https://doi.org/10.1137/110836584
https://doi.org/10.1016/j.acha.2016.09.004
https://doi.org/10.1016/j.acha.2016.09.004
https://doi.org/10.1090/S0025-5718-2011-02539-1
https://doi.org/10.1090/S0025-5718-2015-02948-2
https://doi.org/10.1016/0021-9045(82)90092-2
https://doi.org/10.1016/j.acha.2021.07.003
https://www.sciencedirect.com/science/article/pii/S1063520321000609
https://www.sciencedirect.com/science/article/pii/S1063520321000609
https://doi.org/10.1007/BF01386302

[24] P. Stoica and R. Moses, Spectral Analysis of Signals. Upper Saddle River, N.J. : Pearson/Prentice Hall,
2005.

[25] W. Li, W. Liao, and A. Fannjiang, “Super-resolution limit of the esprit algorithm,” IEEE transactions
on information theory, vol. 66.7, pp. 4593-4608, 2020.

[26] W. Gautschi, “On inverses of vandermonde and confluent vandermonde matrices ii,” Numerische Math-
ematik, vol. 5, pp. 425-430, 1963.

28



	1 Introduction
	1.1 Background
	1.2 Our contributions
	1.3 Discussion

	2 Preliminaries
	2.1 Notation

	3 Main Results
	3.1 Optimal bounds for the smallest singular value
	3.2 Stable super-resolution of generalized spikes of order 1

	4 Proofs
	4.1 Square confluent Vandermonde matrices
	4.2 Proof of Theorem 3.1. 
	4.2.1 Overview of the proof
	4.2.2 The existence of an admissible decimation

	4.3 Proof of Theorem 3.2. 
	4.4 Proof of Theorem 3.3
	4.4.1 Notation
	4.4.2 Proof of the upper bound
	4.4.3 Proof of the lower bound


	5 Numerical experiments
	A Computations for Theorem 3.2
	A.1 Finite difference coefficients
	A.2 Proof of Lemma 4.5
	A.3 Proof of Lemma 4.6
	A.4 Proof of Lemma 4.4
	A.5 Proof of Lemma 4.7

	B ESPRIT Method

