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STABLE SOFT EXTRAPOLATION OF ENTIRE FUNCTIONS

DMITRY BATENKOV, LAURENT DEMANET, AND HRUSHIKESH N. MHASKAR

Abstract. Soft extrapolation refers to the problem of recovering a function from its samples, multiplied
by a fast-decaying window and perturbed by an additive noise, over an interval which is potentially larger
than the essential support of the window. To achieve stable recovery one must use some prior knowledge
about the function class, and a core theoretical question is to provide bounds on the possible amount of
extrapolation, depending on the sample perturbation level and the function prior.

In this paper we consider soft extrapolation of entire functions of finite order and type (containing
the class of bandlimited functions as a special case), multiplied by a super-exponentially decaying window
(such as a Gaussian). We consider a weighted least-squares polynomial approximation with judiciously
chosen number of terms and a number of samples which scales linearly with the degree of approximation.
It is shown that this simple procedure provides stable recovery with an extrapolation factor which scales
logarithmically with the perturbation level and is inversely proportional to the characteristic lengthscale of
the function. The pointwise extrapolation error exhibits a Hölder-type continuity with an exponent derived
from weighted potential theory, which changes from 1 near the available samples, to 0 when the extrapolation
distance reaches the characteristic smoothness length scale of the function. The algorithm is asymptotically
minimax, in the sense that there is essentially no better algorithm yielding meaningfully lower error over
the same smoothness class.

When viewed in the dual domain, soft extrapolation of an entire function of order 1 and finite expo-
nential type corresponds to the problem of (stable) simultaneous de-convolution and super-resolution for
objects of small space/time extent. Our results then show that the amount of achievable super-resolution
is inversely proportional to the object size, and therefore can be significant for small objects. These results
can be considered as a first step towards analyzing the much more realistic “multiband” model of a sparse
combination of compactly-supported “approximate spikes”, which appears in applications such as synthetic
aperture radar, seismic imaging and direction of arrival estimation, and for which only limited special cases
are well-understood.
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1. Introduction

1.1. Background. Consider a one-dimensional (in space/time) object F , and suppose it is corrupted by a
low-pass convolutional filter K and additive modeling/noise error E, resulting in the output G:

G (x) =

ˆ

K (x− y)F (y) dy + E (x) .

In the Fourier domain, we have

F̂ (ω) :=

ˆ

R

F (x) exp(−iωx)dx (1.1)

and consequently

Ĝ (ω) = K̂ (ω) F̂ (ω) + Ê (ω) , (1.2)

where K̂ (ω) has small frequency support Ω∗, the so-called “effective bandlimit” of the system (for example

as in the case of the ideal low-pass filter K̂ = χ[−Ω∗,Ω∗]). The problem of computational super-resolution
asks to recover features of F (x) from G (x) below the classical Rayleigh/Nyquist limit π

Ω∗

[5, 23]. As an
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ill-posed inverse problem, super-resolution can be regularized using some a-priori information about F . One
of the main theoretical questions of interest is to quantify the resulting stability of recovery.

Viewed directly in the frequency domain, super-resolution is equivalent to out-of-band extrapolation of F̂ (ω)

for |ω| > Ω∗ from samples of Ĝ (ω). Since the Fourier transform is an analytic function, this leads to the the
problem of stable analytic continuation, widely studied during the last couple of centuries (Subsection 1.3).

1.2. Contributions. In this paper we consider the question of stable extrapolation of certain class of entire
functions F̂ . In more detail, we assume that F̂ is analytic in C and, for some τ > 0,

sup
|z|>0, z∈C

∣
∣
∣F̂ (z)

∣
∣
∣ exp (−τ |z|) ≤ 1. (1.3)

The underlying motivation for choosing such a growth condition is that the resulting set contains Fourier
transforms of distributions of compact support (see Subsection 1.5 below for more details). Another common

name for such F̂ would be “bandlimited” (or, in this case, “time-limited”).

Furthermore, instead of the “hard” cutoff K̂ = χ[−Ω∗,Ω∗] we consider “soft” windows of super-exponentially
decaying shapes, parametrized by α ≥ 2 (see Figure 1.1c on page 3)

K̂ (ω) = wα (ω) := exp (− |ω|α) . (1.4)

Gaussian point-spread functions are considered a fairly reasonable approximation in microscopy [39], and

when α is increased the shape of K̂ approaches the ideal filter. We therefore argue that the assumption (1.4)
is realistic in applications.

We further assume that the perturbation Ê (ω) in (1.2) is a uniformly bounded function

∣
∣
∣Ê (ω)

∣
∣
∣ ≤ ε, ω ∈ R. (1.5)

The “soft extrapolation” question, schematically depicted in Figure 1.1a on page 3 is then to recover F̂ (ω)
in a stable fashion, over an interval |ω| ≤ Ω′ which is potentially larger than the effective support of the
window |ω| ≤ Ω∗, where both Ω′ and Ω∗ may depend on ε and α, τ .

Our first main result, Theorem 2.1 below (in particular see also Remark 2.2), shows that a weighted least-
squares polynomial approximation with sufficiently dense samples of the form (1.2), taken inside the interval

[−Ω∗,Ω∗] with Ω∗ scaling (up to sub-logarithmic factors1) like
(
log 1

ε

) 1
α and a judiciously chosen number

of terms achieves an extrapolation factor Ω′

Ω∗

which scales (again, up to sub-logarithmic in 1
ε factors) like

1
τ

(
log 1

ε

)1− 1
α , while the pointwise extrapolation error exhibits a Hölder-type continuity, morally of the form

εγ(ω) for |ω| < Ω′. The exponent γ varies from γ(0) = 1 to γ(Ω′) = 0, has an explicit form originating from
weighted potential theory, and has itself a minor dependence on ε that we make explicit in the sequel.

Our second main result, Theorem 2.2 below, shows that the above result is minimax in terms of optimal
recovery and thus cannot be meaningfully improved with respect to the asymptotic behaviour in ε ≪ 1.

In fact, we prove more general estimates, which hold for functions F̂ of finite exponential order λ ≥ 1 and
type τ > 0, satisfying

sup
|z|>0

∣
∣
∣F̂ (z)

∣
∣
∣ exp

(
−τ |z|λ

)
≤ 1 (1.6)

provided that the window parameter satisfies α > λ.

1More complete scaling w.r.t ε, made precise in the sequel, is Ω∗ ∼

(

1
log log 1

ε

log 1
ε

) 1
α
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(a) Schematic spectrum extrapolation from noisy and bandlimited data. The orig-

inal function is F̂ (green, dashed). After being multiplied by the window K̂ = wα

(brown, dash-dot), it gives the blue, solid curve. Adding a corruption Ê of size ε,

this gives the data Ĝ (shaded grey). The question is to recover F̂ (ω) over as wide
an interval as possible, with as good an accuracy as possible.

(b) The object prior: the function F has small
space/time extent.
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(c) The super-exponentially decaying windows

K̂α(ω) = wα(ω) (left column) and their inverse
Fourier transforms (time domain filters Kα(x)).

Figure 1.1. The schematic representation of the “soft extrapolation” problem.

1.3. Novelty and related work. Analytic continuation is a very old subject since at least the times of
Weierstraß [16]. It is the classical example of an ill-posed inverse problem, and has been considered in this
framework since the early 1960’s [33, 34, 10, 35], [6, 7, 19], and more recently [12] and [42]. These works
establish regularized linear least squares as a near-optimal computational method, while also deriving the
general form of Hölder-type stability, logarithmic scaling of the extrapolation range and the connection to
potential theory. Weighted approximation of entire functions has been previously considered in [26, 28].
Below we outline some of these results in more detail, and relate them to ours.

(1) Miller [34] and Miller&Viano [35] considered the problem of analytic continuation in the general
framework of ill-posed inverse problems with a prescribed bound. A general stabiliy estimate of the
form εw(z) was established using Carleman’s inequality, and regularized least squares (also known as
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the Tikhonov-Miller regularization) was shown to be a near-optimal recovery method. The setting in
these work is one of “hard” extrapolation, where F is analytic in an open disc D, is being measured
on a compact closed curve Γ ⊂ D, and extended into D. It is assumed that F is uniformly bounded
by some constant on ∂D.

In contrast, we consider analytic continuation of entire functions satisfying (1.6) on unbounded
domains from samples on intervals of the form Γ = [−Ω∗,Ω∗] into D = {|z| ≤ Ω′} where both Ω∗
and Ω′ can be arbitrarily large when ε ≪ 1. It doesn’t appear obvious how to extend the methods
in [34, 35] to this setting, without using tools of weighted approximation of entire functions which
were developed later.

(2) Tikhonov-Miller theory was applied in the particular context of super-resolution in [6]. The inverse
problem of “optical image extrapolation”, i.e. restoring a square-integrable bandlimited function
from its measurments on a bounded interval is precisely dual to extrapolating the Fourier transform
of a space-limited object of finite energy. For the “hard window” χ[−1,1] and any bandlimit c > 0
the authors showed that the best possible reconstruction error has a Hölder-type scaling εα for some
0 < α < 1/2, in the uniform norm.

In contrast, we consider the “soft” formulation, where the convolutional kernel K̂ does not vanish,
but rather becomes exponentially small at high frequencies. Our estimates give point-wise error
bounds so that the Hölder exponent is a function of the particular point, while also providing the
functional dependence on the bandlimit c (corresponding to τ in our notations).

(3) Out-of-band extrapolation for bandlimited functions was also considered in [19]. This setting is
closely related to ours as the sampling interval can be arbitrary. It was shown that in this case,
the optimal extrapolation length scales logarithmically with the signal-to-noise ratio, however no
pointwise estimates were obtained. The sampling widow was again the “hard” one K̂ = χ[−Ω,Ω].

Our results provide a more complete extrapolation scaling, τ−1 log 1
ε rather than just Landau’s

log 1
ε , while also giving pointwise error estimates. We also allow for functions of exponential order

λ ≥ 1, and taking α → ∞ and λ = 1, we in fact recover Landau’s scalings.
(4) A recent work by Demanet&Townsend [12] investigates the question of stable extrapolation of an-

alytic functions having convergent Chebyshev polynomial expansions in a Bernstein ellipse with
parameter ρ from equispaced data on [−1, 1]. Linear least squares reconstruction is shown to be
asymptotically optimal, if the number of samples scales quadratically with M , the number of terms
in the approximation, and also M ∼ log 1

ε . The resulting extrapolation error scales as εα(x) where α
has a simple dependence on ρ. Naturally, the maximal extrapolation extent is the boundary of the

ellipse, i.e. xmax = (ρ+ρ−1)
2 , and also α(1) = 1, while α(xmax) = 0.

Our results are close in spirit to [12], in particular the scaling n ≈ log 1
ε for the polynomial

approximation order, however the specific setting of soft extrapolation is different. Furthermore,
we do not require equispaced samples (but only bound the sample density), and also we obtain
point-wise extrapolation error bounds on the entire complex plane rather than just the real line.

(5) In another related recent work [42], Trefethen considers stable analytic continuation from an interval
E to an infinite half-strip (the so-called “linear” geometry), and shows an exponential loss of signif-
icant digits as function of distance from E (corresponding to a stability estimate of the form εα(x)

where x is the distance from E and α decreases exponentially). In contrast, we consider functions
analytic in the entire plane C which is not conformally equivalent to the linear geometry.

(6) Extrapolation is closely related to approximation, and in our case of “soft window”, one is naturally
lead to adding a corresponding weight function. Indeed, the theory of weighted approximation (in
particular of entire functions, [26, 27, 28]) plays a crucial role in our developments. In addition
to extending these works to the extrapolation setting, our numerical approximation scheme in this
paper does not necessarily require construction of quadrature formulas and orthogonal polynomials
with respect to the weight w2

α.

1.4. Organization of the paper. In Section 2 we define the basic notation and formulate the main the-
orems. In Section 3 we present some numerical experiments which demonstrate the results in the case of
α = 2 and λ = 1. In Section 4 we quote results from weighted approximation theory which are subsequently
used in Section 5 for the proofs.
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1.5. Discussion. When viewed in the dual domain (the x variable in (1.1)), soft extrapolation of an entire
function of order λ = 1 and finite exponential type τ > 0 corresponds to the problem of (stable) simultaneous
de-convolution and super-resolution for objects F of small space/time extent τ . Indeed, if F ∈ L1, ‖F‖1 ≤ 1,

F is even, and F (t) = 0 if |t| > τ , then the Fourier transform F̂ in (1.1) is an entire function satisfying (1.3)

(another common name for F̂ would be “bandlimited”, although in this case it would be more appropriate
to say “time-limited”). This is an example of theorems of Paley-Wiener type ([41, Sect. 7.2], see also [37,
p.12]), which hold also for more general classes such as tempered distributions.

In various applications such as seismic imaging, communications, radar, and microscopy, a fairly realistic
prior on F takes the form of a sparse atomic combination of compactly supported waveforms, also known as
the multiband model in the literature [45, 36, 18, 43]

F (x) ∼
R∑

j=1

Fj (x− xj) , (1.7)

where each Fj (x) is assumed to have a small space/time support but is otherwise unknown. While there exist
numerous studies of multiband signals such as the ones quoted above, super-resolution properties associated
with this model are not well-understood, except in only some special cases (see e.g. [1, 2, 3, 4, 8, 9, 11, 13,
14, 22, 25, 29, 38, 40] as a very small sample).

Our results in this paper may be interpreted in this context when instead of the sparse sum in (1.7) we
can consider the limit of a single object (possibly a distribution) F of compact space/time support τ > 0
(Figure 1.1b on page 3). In particular, we obtain the best possible scalings for stability of this inverse
problem, showing that the amount of achievable super-resolution scales like 1

τ log 1
ε , and therefore can be

significant for small objects with τ ≪ 1. Furthermore, a simple algorithm — linear least squares fitting —
is asymptotically optimal.

2. Optimal extrapolation of entire functions

2.1. Notation. In the sequel, we fix α ≥ 2, and omit its mention from notations except to avoid conflict
of notation, and for emphasis. Also, contrary to the introductory section, in the remainder of the paper we
denote the extrapolation variable by x instead of ω. The functions F̂ , Ĝ, Ê will correspond to f, g and φ.

We shall use the standard definitions and notations of the spaces Lp for 0 < p ≤ ∞ (in this paper with
respect to the Lebesgue measure on R) and the corresponding norms ‖ · ‖p.
Given a function f : C → C, and τ > 0, λ ≥ 1 we define

|||f |||τ,λ := sup
|z|>0

|f(z)| exp(−τ |z|λ). (2.1)

Definition 2.1. Given τ > 0, λ ≥ 1, the class Bτ,λ consists of all entire functions f , real valued on R, and
satisfying the condition

|||f |||τ,λ ≤ 1. (2.2)

Remark 2.1. Without loss of generality, in this paper we restrict the considerations to the class Bτ,λ,
although it is a proper subset of the set of entire functions of exponential order λ and type τ2.

Indeed, for fixed λ, τ , any f (real-valued on R) of order λ and type τ and any τ ′ > τ we have |||f |||τ ′,λ < ∞,
and therefore f = cf0 for some constant c and f0 ∈ Bτ ′,λ. Furthermore, if the original f is complex-valued
on R, one can consider the approximation of its real and imaginary parts separately, without changing the
main asymptotic behaviour of the bounds.

Definition 2.2. When comparing small functions of a small quantity ε → 0, we shall write a (ε) / b (ε)
when there exists ε0, depending on α, τ, λ only, such that for all c1 > 0 (however small), there exists c2 > 0,
depending on α, τ, λ, c1 such that

a(ε) ≤ c2

(
1

ε

)c1/log log 1
ε

b(ε), ε < ε0.

2The standard definition of order and type is as follows (see e.g. [20]): if M(f, r) := sup0<|z|≤r |f(z)|, then

λ := lim supr→∞
log logM

log r
and τ := lim supr→∞

logM

rλ
.
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When both a / b and b / a we shall sometimes write a ≈ b.

For y > 0, Πy denotes the class of all algebraic polynomials of degree at most y. This is the same as the
class of polynomials of degree at most ⌊y⌋, but the notation is simplified if we simply interpret Πy in this
way, rather than writing Π⌊y⌋.

2.2. Extrapolation by least squares fitting. Let C = {xM < · · · < x1} be a set of arbitrary real numbers.
We observe data of the form

g(x) = wα(x)f(x) + φ(x), x ∈ C, (2.3)

where f ∈ Bτ,λ and φ is a function satisfying

|φ(x)| ≤ ε, x ∈ C. (2.4)

Given C and g as above, we define the operator Sn computing the solution to the following least squares
problem of degree n:

Sn(g; C) : = arg min
P∈Πn

M−1∑

j=1

(
w−1

α (xj)g(xj)− P (xj)
)2

(xj − xj+1)w
2
α(xj)

= arg min
P∈Πn

M−1∑

j=1

(g(xj)− wα(xj)P (xj))
2 (xj − xj+1).

(2.5)

When clear from the context, we shall omit C and write Sn (g).

Let

an := βαn
1
α , βα :=

{
2α−2Γ(α/2)2

Γ(α)

}1/α

. (2.6)

Our first main result below bounds the error |f(z)− Sn(g)(z)| for z ∈ C with the particular choice

n = n(ε, α, τ, λ) =

⌊
1

q(ε, α, τ, λ)
log

1

ε

⌋

with q(ε) ≈ log log 1
ε , under the assumption that the sampling set C approximately lies in the interval

[−an, an] and is sufficiently dense3.

The error bound heuristically behaves like a z-dependent fractional power of the perturbation, but in reality
it is slightly more complicated. In more detail:

(1) There is a natural rescaling of the z variable by a factor of an (which in turn depends on ε), because
the sampling set C and the resulting approximating polynomial Sn themselves depend on n. So
instead of bounding |f(z)− Sn(g)(z)| directly, we have a bound of the form

|f(anz)− Sn(g)(anz)| / εγ(z).

(2) The exponent γ(z) in fact has a weak dependence on ε, and it is of the form γ(z) = 1 − 1
q(ε) δ(z)

where q(ε) ≈ log log 1
ε is the same function used in the definition of n above and δ(z) is a certain

logarithmic potential.

There are three distinct regions in the complex plane with respect to the error asymptotics:

(1) The “approximation region” [−an, an]. In the range [−1, 1] we have in fact δ(x) = |βαx|α, and
therefore (disregarding the rounding effects) it can be easily shown that

εγ(x) = εw−1
α (anx).

This is the error that would be obtained by conventional deconvolution, i.e. division by wα. Note
that for any x ∈ [−1, 1] we have as ε → 0

γ(x) = 1− δ(x)

q(ε)
→ 1.

3q(ε) is given by (5.46), and the density conditions are given in (2.7) and (2.8)

6



(2) The “extrapolation region”, where the error εγ(z) is less than exp(τ |anz|λ), i.e. the maximal growth
rate for any function in Bτ,λ. It turns out that the maximal extrapolation interval can be precisely
determined as |z| ≤ rn/an, where

rn :=

(
n

τλ

) 1
λ

.

In terms of the Hölder exponent γ, it turns out that limε→0
δ(rn/an)

q(ε) = 1, and therefore as ε → 0 we

have

γ(rn/an) → 0.

(3) The “forbidden” region |z| > rn/an where essentially no information can be obtained about f from
the samples on [−an, an].

In Figure 2.1 on page 7 we show an example for the behaviour of both the exponent γ(z) and the complete
bound εγ(z) for different values of ε and other parameters fixed.

0 5 10 15 20
z

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00
The exponent γ(z), τ=0.5, α=2, λ=1

ε=1.0e-300, 1-1/q=0.69, �=214
ε=1.0e-50, 1-1/q=0.59, �=46
ε=1.0e-05, 1-1/q=0.35, �=7

(a) The exponent γ(z). As ε becomes smaller, the values
of γ in the interval [0, 1) approach 1, while at the right
boundary z = rn/an they approach 0.
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|z|
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(b) The complete bound εγ(z) (solid), the quantity

exp(τ |anz|λ) (dashed) and w−1
α (anz) (dotted).

Figure 2.1. The optimal exponent γ(z) and the corresponding error bound εγ(z) for several
values of ε and τ = 0.5, λ = 1, α = 2.

Remark 2.2. The length of the sampling window Ω∗ essentially scales like an ≈
(

1
log log 1

ε

log 1
ε

) 1
α

, while the

maximal extrapolation range Ω′ is of the asymptotic order rn ≈
(

1
τ

1
log log 1

ε

log 1
ε

) 1
λ

. Therefore we obtain a

genuine extension by a factor of Ω′/Ω∗ ≈
(
1
τ

) 1
λ

(
1

log log 1
ε

log 1
ε

) 1
λ− 1

α

.

The result reads as follows, and is proved in Section 5.

Theorem 2.1. Let f ∈ Bτ,λ. For ε > 0, α > λ let n = n(ε, α, τ, λ) ≈ log 1
ε be as defined in (5.45) below.

For any sequence of points C = {xM < · · · < x1} satisfying
[

−4

3
an,

4

3
an

]

⊆ [xM , x1] ⊆ [−2an, 2an] , (2.7)

|xj − xj+1| ≤ c1n
1
α−1, (2.8)

where c1 = c1 (α) is the explicit consant defined in (5.52) below, let Sn (g; C) be the weighted least squares
polynomial fit of degree n to f using samples of g as in (2.3), (2.4) and (2.5).

7



Then the (properly rescaled) pointwise extrapolation error satisfies

|f (anz)− Sn(g) (anz)| /







εw−1
α (anz) z ∈ [−1, 1]

ε1−
1

q(ε)
δ(z) |z| < rn/an, z ∈ C

exp
(
τ |anz|λ

)
|z| > rn/an, z ∈ C

, (2.9)

where q (ε) is given by (5.46) and satisfies q(ε) ≈ log log 1
ε , while the function δ (z) is defined in (5.49) below,

such that

lim
ε→0

δ(z)

q (ε)
=

{
0 for any fixed |z| (2.10)

1 for any z = zε with |zε| = rn/an. (2.11)

Furthermore, the relation in (2.9) holds uniformly on compact subsets in z.

Remark 2.3. If the points are chosen to be equispaced, then it suffices to have at most linear (in the
approximation degree n) growth of the size of the sampling set C, as indeed it is sufficient to take

|Cequi| =
4

3c1
ann

1− 1
α ≤ cn.

2.3. Optimality. Next, we will show that the results above cannot be meaningfully improved. To do so, we
first review some facts from the theory of optimal recovery based on [32, 31], as they relate to our problem.
We consider the set Bτ,λ as a subset4 of the space X of all continuous functions f : R → R such that
wαf ∈ L∞.

Let Y be a normed linear space with norm given by ‖ · ‖Y , and I : X → Y , R : Y → X be functions. The
function I is called information operator, and R is called a recovery operator. In [32, 31], I is required to be
a linear operator, but we do not need this restriction here. In its place, we require that

‖I(f)‖Y ≤ ‖wαf‖∞, f ∈ X. (2.12)

We give some examples of R and I.

(1) A trivial example is Y = X and I(f) = wαf , f ∈ X . In this case the recovery operator is of interest
only for an extension of f to C.

(2) In this paper, we are considering the mapping I : X → RM given by

I(f) = (f(xM )wα(xM ), · · · , f(x1)wα(x1)),

and the recovery operator given by Sn.
(3) If wαf ∈ L1 + L∞, we define its Fourier-orthogonal coefficients (see (4.14) below) by

f̂(k) =

ˆ

R

f(t)pk(t)w
2
α(t)dt, k = 0, 1, · · · . (2.13)

Let Y be the space of all sequences {dk} for which

‖{dk}‖Y = c−1
2 sup

k≥0
(k + 1)1/(2α)|dk| < ∞,

where c2 is defined in (4.15). The information operator I(f) = {f̂(k)} maps X into Y , and satisfies
(2.12). An example of a recovery operator is the expansion

∑∞
k=0 dkpk(z) which converges when

f ∈ Bτ,λ and dk = f̂(k). This shows that one can weaken the condition (2.12), allowing a constant
factor on the right hand side of the inequality, by renormalizing Y .

For any information operator I and recovery operator R, z ∈ C, and ε > 0, we are interested in the worst
case recovery error when the information is perturbed by ε:

E(τ, λ, ε, z;R, I) := sup
f∈Bτ,λ, ‖y‖Y ≤ε

|f(anz)−R(I(f) + y)(anz)|, (2.14)

where again n = n (ε, α, τ, λ) as given by (5.45). The best worst case (minimax) error is defined by

E(τ, λ, ε, z) := inf
R,I

E(τ, λ, ε;R, I), (2.15)

4Since the estimate (5.4) is uniform for all functions in Bτ,λ, Bτ,λ is a compact subset of X.
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where it is understood that the infimum is over all R and I with all normed linear spaces Y , subject to
(2.12). Informally, E(τ, λ, ε, z) the best accuracy one can expect in reconstructing f(z) for every f ∈ Bτ,λ

from any kind of information and recovery based only on the values of f on R. It is closely related to the
notion of “best possible stablity estimate” of K.Miller [34], cf. Subsection 1.3.

With these notations, the bound (2.9) in Theorem 2.1 means that (with q = q (ε) as before)

E(τ, λ, ε, z) / ε1−
1
q δ(z), |z| ≤ rn/an.

The following theorem shows that in this sense of optimal recovery, this result is the best possible.

Theorem 2.2. There exists a function ξ(ε) satisfying ξ(ε) / ε, such that for any z ∈ C, ε > 0

E (τ, λ, ξ (ε) , z) ' ε1−
1
q δ(z), (2.16)

the relation holding uniformly for compact sets in the complex plane (w.r.t z).

In particular, for any small enough ε ≪ 1 there exists a “dark object” fε such that

(1) for x ∈ [−Ω∗,Ω∗] it has the same magnitude as the perturbation level:

|fε (x)| / εw−1
α (x) ;

(2) outside the sampling window, it has the same magnitude as the extrapolation error:

|fε (anz)| ' ε1−
1
q δ(z), |z| ≤ rn/an.

3. A numerical illustration: functions of order λ = 1 with Hermite polynomials

In this section we specialize our preceding results to the case α = 2, λ = 1, with f a function of finite
exponential type τ > 0. We then run a simple computational experiment and compare the results with the
theoretical predictions, showing good agreement between the two in practice.

For technical convenience, we have chosen to work with an off-the-shelf implementation of Hermite polyno-

mials, which are orthogonal with respect to the weight function u2(x) = exp
(

−x2

2

)

. So instead of (2.3) we

assume that f is blurred by u2. Since our weights wα are not of this form, we perform a trivial change of
variable t = x/

√
2 and apply our results to the function h(t) := f(t

√
2), which is consequently of exponential

type τ ′ = τ
√
2.

In this case we have β2 = 1, an =
√
n, F2 = log(1/2)− 1/2, v2(t) = (1/π)

√
1− t2 and also5

δ(z) = U(z)− F2 = log
∣
∣
∣z +

√

z2 − 1
∣
∣
∣+ ℜ

(

z2 − z
√

z2 − 1
)

, (3.1)

where the branch of
√
z2 − 1 is chosen so that

√
z2 − 1/z → 1 as z → ∞.

Further, according to our notations, we also have ρ = τ ′
√
e/2, µ = 1/2 and

q (ε) =
1

2
W
(

4

τ2e
log

1

ε

)

,

n =

⌊
1

q
log

1

ε

⌋

.

To implement the least squares operator Sn, we have chosen to work in the basis of Hermite orthogonal poly-
nomials Hn which satisfy

´

Hk(x)Hj(x) exp
(
−x2

)
dx = δk,j . Following Remark 2.3 we pick 2n equispaced

samples in
[
−
√
2n,

√
2n
]

(i.e. the oversampling factor is 2).

For running the experiments below, we have chosen the following model function fτ to extrapolate:

fτ (x) :=
1

14

(
5 + cosh (τx − 2) + sinh (τx)

)
. (3.2)

A simple computation shows that |||fτ |||τ,1 ≤ 1, and therefore fτ ∈ Bτ,1.

5According to [30, (2.9)], the relationship between δ(z) and the function G(2; z) is

G(2; z) = exp
{

δ(z) − log
∣

∣

∣z +
√

z2 − 1
∣

∣

∣− |z|2
}

.

The explicit formula for G(2; z) is then given by [30, (2.19),(2.20)].
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Theorem 2.1 implies that the error satisfies, in the unscaled z variable,

|fτ (z)− Sn(g)(z)| / Eτ,ε(f ; z) :=







ε exp
(
z2/2

)
z ∈

[
−
√
2n,

√
2n
]

εγ
′

ε(z), γ′
ε(z) = 1− 1

q δ
(

z√
2n

)

|z| ∈ [
√
2n, n

τ ]

exp (τ |z|) |z| > n

τ .

(3.3)

Instead of the construction used in the proof of Theorem 2.2 (i.e. the function P ∗
n

given in (5.56)), we shall
use the following function as our “dark object” (unrelated to fτ ):

fτ,ε (z) := cosh (τz)−
∑

n<n

e
τ2

4
τnπ

1
4 (1 + (−1)n)√

2nn!
Hn (z) . (3.4)

It is not difficult to show that this function is in Bσ,1 and in fact also satisfies (5.57) and (5.60)6. The
underlying reason for using a different function fτ,ε is that it is not known how to evaluate P ∗

n
general, while

(3.4) is an absolutely explicit formula.

In Figure 3.1 on page 10 we show the reconstruction and the corresponding errors + bounds for fixed τ, ε
in the original scaling. As can be seen in Figure 3.1a on page 10, the derived bounds Eτ,ε are reasonably
accurate. In Figure 3.1b on page 10 it is clearly seen that the algorithm chooses a reasonable value for n,
avoiding the extreme noise outside the essential support of the window.

In Figure 3.2 on page 11 the reconstruction and comparison were performed for fixed z0 and σ, varying ε.
It can be seen that the dependence of the error on ε is accurately determined. The threshold values of ε
for which one moves from interpolation to extrapolation region (ε1→2) and from extrapolation to forbidden
region (ε2→3) can be approximately determined as the solutions ε1→2 and ε2→3 of the equations

z0 =
√
2n ⇐⇒ ε1→2 = exp

(
−q(ε1→2)z

2
0/2
)
, (3.5)

z0 = rn ⇐⇒ ε2→3 = exp (−q(ε2→3)τz0) . (3.6)

-20 -10 0 10 20
x

10−6

10−4

10−2

100

102

�=5, τ=0.3, ε=1.0e-5

max error
Eτ, ε
fτ, ε
Ω*=3.2
-Ω*
�/τ=16.7
-�/τ

(a) The error and the bounds. Thin black lines are
|fτ − Sn(g)(z)| for different noise realizations (see (2.3)
and (2.4)), their maximal envelope is the red solid curve.
The green, dashed curve is the analytical bound Eτ,ε in
(3.3), while the magenta, dashdotted curve is the mini-
max function fτ,ε defined in (3.4). The dotted vertical
lines are the region boundaries.

-15 -10 -5 0 5 10 15
x

-10

-5

0

5

10

15

20

25
Ω* =3.2, �=5

original
samples
data
10Kα
extrapolated

(b) The function (blue dashed) and its extrapolant (red
solid). The black dots are the actual sampling points,

while the grey curve is the noisy function u−1
2 (x)g(x)

which would need to have been used without extrapola-
tion – recall (2.3). As can be seen, the choice of n ensures
that the samples are taken inside the essential support of
the window, which depends on ε.

Figure 3.1. Results for the function defined in (3.2) with τ = 0.3 and ε = 10−5.

6Proof is available upon request.
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10−14 10−12 10−10 10−8 10−6 10−4 10−2
ε

10−12

10−10

10−8

10−6

10−4

10−2

100
z₀=4.0₀τ=0.15

error
Eτ₀ ε
fτ₀ ε
ε1→2
ε2→3

(a) z0 = 4, the transition between regions 1 and
2 (black vertical line) computed numerically from
(3.5).

10−17.5 10−15.0 10−12.5 10−10.0 10−7.5 10−5.0 10−2.5
ε

10−1

100

101

102

103

104
z₀=38.0₀τ=0.15

error
Eτ₀ ε
fτ₀ ε
ε1→2
ε2→3

(b) z0 = 38, the transition between regions 2 and
3 (brown vertical line), computed numerically from
(3.6).

Figure 3.2. Error (red, solid curve) vs bound Eτ,ε (green, dashed curve) and the minimax
function fτ,ε (magenta, dashdotted) from (3.4) for τ = 0.15, as function of ε for a fixed z0.
Same function fτ as in (3.2).

4. Preliminaries from weighted approximation theory

4.1. Weighted polynomials. A very important fact in the theory of weighted approximation is that the
supremum norm of weighted polynomials is attained on an interval depending only on the degree of the
polynomial, and not on the individual polynomials involved. We need to describe this fact in some detail.
Let

ax(α) := βαx
1/α :=

{
2α−2Γ(α/2)2

Γ(α)

}1/α

x1/α, x > 0, (4.1)

be the so called Mhaskar-Rakhmanov-Saff numbers. The Ullman distribution is defined by

vα (t) :=
α

π

ˆ 1

|t|

yα−1

√

y2 − t2
dy, |t| ≤ 1. (4.2)

Further denote by U (z) its logarithmic potential

U (z) := U(α; z) =

ˆ 1

−1

log |z − t| dvα (t) , z ∈ C. (4.3)

The number

Fα := log(1/2)− 1

α
(4.4)

is called the modified Robin’s constant for wα.

The following is proved in [27, Theorem 6.4.2], in fact, for all α > 0.

Theorem 4.1. Let α > 0. Then

(a) The potential U satisfies

U(α;x) = |βαx|α + Fα, if x ∈ [−1, 1],

U(α;x) < |βαx|α + Fα, if x ∈ R \ [−1, 1].
(4.5)

(b) If n > 0, P ∈ Πn, then

|P (z)| ≤ exp (nU(α; z/an)− nFα) max
x∈[−an,an]

|wαP (x)|. (4.6)
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In particular,

‖wαP‖∞ = max
x∈[−an,an]

|wα(x)P (x)|. (4.7)

The following theorem gives an analogue of (4.7) in the case of the Lp norms. The proof of this theorem is
essentially in [27], but proved in [28, Theorem 2.2] in the form given below.

Theorem 4.2. Let 1 ≤ p < ∞, α > 1, ax be as in (4.1). For any η > 0, integer m ≥ c log(1/η) and
P ∈ Πm, we have

ˆ

|y|≥am(α)(1+A(α,η)/(pm)2/3)

|P (y)wα(y)|pdy ≤ η‖wαP‖pp, (4.8)

where

A(α, η) ≥
{(

2

3
αmin(2α−2, 1/(α− 1))

)−1 (

log(2/(2−
√
3)2) + log(1/η)

)
}2/3

. (4.9)

In the sequel, we will use the notation

∆n(p, α, η) = [−an(α)(1 +A(α, η)/(pn)2/3), an(α)(1 +A(α, η)/(pn)2/3)]. (4.10)

Definition 4.1. Let Tn denote the unique monic polynomial of degree n satisfying

‖Tnwα‖∞ = inf
P∈Πn−1

‖ ((·)n − P )wα‖∞. (4.11)

These are also called weighted Chebyshev polynomials, as the above expression is completely analogous to
the well-known property of the classical Chebyshev polynomials Tn, namely that Tn is the minimax monic
approximant to the zero function [15, Theorem 3.6].

The following proposition (see e.g.[27, Section 6.3], [24, Corollary 3.3]) lists some of the required properties
of Tn.

Proposition 4.1. Let α ≥ 2. Then

(a) For n ≥ 1, the polynomial Tn has n simple zeros in [−an, an]: −x∗
n,n < · · · < x∗

1,n.
(b) We have

lim
n→∞

‖Tnwα‖∞
ann exp(−nFα)

= (1/2)e−1/α. (4.12)

(c) Uniformly on compact subsets of C \ [−1, 1], we have

lim
n→∞

|Tn(anz)|
ann exp(−nU(z))

= lim
n→∞

|Tn(anz)|
‖Tnwα‖∞ exp(−nU(z) + nFα)

= 1. (4.13)

We will also use another family of polynomials. Let {pk}∞k=0 be the system of orthonormalized polynomials
with respect to w2

α; i.e., for each k = 0, 1, · · · , pk(x) = γkx
k + · · · ∈ Πk, and for k, j = 0, 1, · · · ,

ˆ

R

pk(t)pj(t)w
2
α(t)dt =

{
1, if k = j,
0, otherwise.

(4.14)

It is known [21, Theorem 13.6] that there exist constants c1, c2 > 0 depending only on α such that

c1 ≤ n1/(2α)‖wαpn‖1 ≤ c2. (4.15)

4.2. Weighted approximation of entire functions. If 1 ≤ p ≤ ∞ and wαf ∈ Lp, we define the degree
of approximation of f by

En(p; f) = En(α, p; f) := inf
P∈Πn

‖(f − P )wα‖p, n = 0, 1, 2, · · · . (4.16)

In [27, Theorem 7.2.1(b)], we have proved the following theorem (with a different notation).
12



Theorem 4.3. Let 1 ≤ p ≤ ∞, λ > 0, α > λ, wαf ∈ Lp, and

ρ1(α, p; f) := lim sup
n→∞

{

nn/λ−n/αEn(α, p; f)
}1/n

< ∞. (4.17)

Then f has an extension to the complex plane as an entire function of order λ and type τ given by

ρ1(α, p; f) = (βα/2)(τλ)
1/λ exp(1/λ− 1/α)(=: ρ(α, τ, λ)). (4.18)

Conversely, if f is the restriction to the real line of an entire function of order λ and type τ , then wαf ∈ Lp

for every p, 1 ≤ p ≤ ∞, ρ1(α, p; f) defined by (4.17) is finite, and (4.18) holds.

5. Proofs

5.1. Asymptotics as n → ∞. In the sequel, the symbols c, c1, · · · will denote positive constants depend-
ing on α, τ, λ, and other explicitly indicated quantities only. Their values may be different in different
occurrences, even within the same formula.

We shall be using the following notation to compare decay of sequences up to sub-exponential factors.

Definition 5.1. For sequences {An}, {Bn}, we write An w Bn (or Bn v An) to denote the fact that there

exists a sequence {Mn} with limn→∞ M
1
n
n = 1, the limit being uniform in α, τ, λ such that

An ≤ MnBn.

Equivalently, for any δ > 0, there exists c > 0, depending on α, τ, λ, δ and other explicitly indicated quantities
only such that

An ≤ c · (1 + δ)nBn, n ∈ N.

Proposition 5.3 below relates the above condition to Definition 2.2.

Recall the weighted Chebyshev polynomials Tn from (4.11) and Proposition 4.1. The following theorem is
proved implicitly in the course of the proof of Lemma 7.2.5 in [27], but we will sketch a proof again since it
is not stated explicitly there.

Theorem 5.1. Let α ≥ 2, 0 < λ < α, τ > 0, and f ∈ Bτ,λ. For integer n ≥ 1 let Ln(f) be the unique
polynomial of Lagrange interpolation in Πn−1 that satisfies f(x∗

k,n) = Ln(f)(x
∗
k,n) at each of the zeros x∗

k,n

of Tn, k = 1, · · · , n. Let {bk} be a sequence such that

lim
k→∞

ak
bk

= 0. (5.1)

(1) If z ∈ C, |z| ≤ bn, then

|f(z)− Ln(f)(z)| w |Tn (z)| b−n
n exp(τbλn) w exp(nU(z/an)− nFα)b

−n
n exp(τbλn). (5.2)

(2) If z ∈ C, |z| > bn, then

|f(z)− Ln(f)(z)| w exp(τ |z|λ). (5.3)

(3) In particular,

En(∞, f) ≤ ‖(f − Ln(f))wα‖∞ (5.4)

w
ρ(α, τ, λ)n

nn/λ−n/α
. (5.5)

The relations hold uniformly on compact subsets in z.

Proof of Theorem 5.1. Since all the zeros of Tn are in [−an, an], we obtain for ζ ∈ C, |ζ| ≥ bn/2 that

|Tn(ζ)| =

∣
∣
∣
∣
∣

n∏

k=1

(ζ − x∗
k,n)

∣
∣
∣
∣
∣
≥ |ζ|n

(

1− 2an
bn

)n

v |ζ|n (5.6)

|Tn(ζ)| ≤ |ζ|n
(

1 +
2an
bn

)n

w |ζ|n. (5.7)
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These hold uniformly in compact subsets in z. We now choose r satisfying (1 + 1/n)bn ≤ r ≤ (1 + 2/n)bn.
Then for |z| ≤ bn, the standard formula for the error in Lagrange interpolation (cf. [44, P. 50, formula (4)])
states that

f(z)− Ln(f)(z) =
Tn(z)
2πi

˛

|ζ|=r

f(ζ)

Tn(ζ)(ζ − z)
dζ. (5.8)

If |ζ| = r, then the definition of Bτ,λ and (5.6) yield

|f(ζ)| ≤ exp(τrλ) w exp(τbλn), |Tn(ζ)| v rn v (1 + 1/n)nbnn, |ζ − z| ≥ 2bn/n. (5.9)

Therefore, we deduce using (5.8) that

|f(z)− Ln(f)(z)| ≤ |Tn (z)|
2π

˛

|ζ|=r

|f (ζ)| |dζ|
|Tn (ζ)| |ζ − z|

w
|Tn (z)|

π
· n

bn
· b−n

n

(

1 +
1

n

)−n

exp(τbλn)

˛

|ζ|=r

|dζ|

w |Tn (z)| b−n
n exp(τbλn). (5.10)

This completes the proof of the first inequality in (5.2). Since (5.9) holds for all |z| ≤ bn, the final inequality
above holds uniformly in z as well. The second inequality follows from Proposition 4.1 and Theorem 4.1.

Next, if |z| ≥ bn, then we use the same argument as in (5.10) with |z|(1 + 1/n) ≤ r ≤ |z|(1 + 2/n), using
also (5.6) to obtain (5.3), uniformly on compact subsets in z.

Next, let rn be defined as in (5.14), i.e.,

rn :=
( n

τλ

) 1
λ

.

Since λ < α, the condition (5.1) is satisfied with rn in place of bn. So, for |z| ≤ rn,

|f(z)− Ln(f)(z)| w |Tn(z)|r−n
n exp(τrλn) = |Tn(z)|

( n

τλe

)−n
λ

. (5.11)

In particular, this estimate holds for x ∈ [−rn, rn] replacing z, so that using (4.12) we deduce that for
x ∈ [−rn, rn],

|(f(x) − Ln(f)(x))wα(x)| w ‖wαTn‖∞
( n

τλe

)−n
λ

w (βα/2)
n(n/e)1/α−1/λ(τλ)−n/λ. (5.12)

A telescopic series argument as in [27, Lemma 7.2.4] then leads to (5.5). �

The main result of this subsection, and the core estimate for proving Theorem 2.1 is the following.

Theorem 5.2. Let n ≥ 1, M ≥ 2 be integers, α ≥ 2, Cn = {xM,n < xM−1,n < · · · < x1,n} ⊂ R, and
∆n(2, α, 1/8) ⊆ [xM,n, x1,n] ⊆ [−2an, 2an]. We assume further that (5.19) is satisfied. Let τ > 0, 0 < λ < α,
and f ∈ Bτ,λ. Then

‖(f − Sn(g; Cn))wα‖∞ ≤ cn{En(∞, f) + ε} w

(
ρ(α, τ, λ)n

nn/λ−n/α
+ ε

)

. (5.13)

With

rn :=
( n

τλ

) 1
λ

, (5.14)

we have, uniformly on compact subsets in z,

|f(z)− Sn(g; Cn)(z)| w







(
ρ(α, τ, λ)n

nn/λ−n/α
+ ε

)

exp(nU(z/an)− nFα) for |z| ≤ rn, (5.15)

exp(τ |z|λ)
(

1 +
nn/λ−n/α

ρ(α, τ, λ)n
ε

)

for |z| > rn. (5.16)

Our first goal is to to prove the following estimate on Sn(g).
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Theorem 5.3. Let n ≥ 1, M ≥ 2 be integers, Cn = {xM,n < xM−1,n < · · · < x1,n} ⊂ R, and [xM,n, x1,n] ⊇
∆n(2, α, 1/8). There exists C = C(α) > 0 such that if

max
1≤j 6=k≤M−1

|xj,n − xj+1,n| ≤
C

n1−1/α
, (5.17)

then

‖(f − Sn(g; Cn))wα‖∞ ≤ c(x1,n − xM,n)n
1−1/α{En(∞, f) + ε}. (5.18)

The first step in the proof of this theorem is the so called Marcinkiewicz-Zygmund inequality.

Theorem 5.4. Let n ≥ 1, M ≥ 2 be integers, 1 ≤ p < ∞, η > 0, xM,n < xM−1,n < · · · < x1,n, and
[xM,n, x1,n] ⊇ ∆n(p, α, η/2) There exists c = c(α) > 0 such that if

max
1≤j 6=k≤M−1

|xj,n − xj+1,n| ≤
c

pn1−1/a
η, (5.19)

then for every P ∈ Πn,
∣
∣
∣
∣
∣
∣

ˆ

R

|wα(t)P (t)|pdt−
M−1∑

j=1

(xj,n − xj+1,n)|wα(xj,n)P (xj,n)|p
∣
∣
∣
∣
∣
∣

≤ η‖wαP‖p. (5.20)

The proof depends upon the following Bernstein-type inequality, which is easy to deduce from [27, Corollary
3.4.3, Lemma 3.4.4].

Proposition 5.1. Let 1 ≤ p ≤ ∞, α > 1. Then for every integer n ≥ 1 and P ∈ Πn,

‖(wαP )′‖p ≤ cn(α−1)/α‖wαP‖p. (5.21)

Proof of Theorem 5.4. Let P ∈ Πn. Without loss of generality, we may assume that ‖wαP‖p = 1. In this
proof we write

δ = max
1≤j 6=k≤M−1

|xj,n − xj+1,n|.

Using Theorem 4.2, and the fact that [xM,n, x1,n] ⊇ ∆n(p, α, η/2), we obtain that
ˆ

t6∈[xM,n,x1,n]

|wα(t)P (t)|pdt ≤ η/2. (5.22)

Next, using Hölder inequality and Proposition 5.1, we observe that

ˆ x1,n

xM,n

|wα(u)P (u)|p−1|(wαP )′(u)|du ≤
{
ˆ x1,n

xM,n

|wα(u)P (u)|pdu
}1/p′ {

ˆ x1,n

xM,n

|(wαP )′(u)|pdu
}1/p

≤ cn1−1/α‖wαP‖pp = cn1−1/α. (5.23)

Therefore,
∣
∣
∣
∣
∣
∣

ˆ x1,n

xM,n

|wα(t)P (t)|pdt−
M−1∑

j=1

(xj,n − xj+1,n)|wα(xj,n)P (xj,n)|p
∣
∣
∣
∣
∣
∣

≤
M−1∑

j=1

ˆ xj,n

xj+1,n

| |wα(t)P (t)|p − |wα(xj,n)P (xj,n)|p | dt

≤ p

M−1∑

j=1

ˆ xj,n

xj+1,n

ˆ xj,n

xj+1,n

|wα(u)P (u)|p−1|(wαP )′(u)|dudt

≤ pδ

ˆ x1,n

xM,n

|wα(u)P (u)|p−1|(wαP )′(u)|du

≤ cpδn1−1/α. (5.24)
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Thus, if δ satisfies cpδn1−1/α ≤ η/2, then
∣
∣
∣
∣
∣
∣

ˆ x1,n

xM,n

|wα(t)P (t)|pdt−
M−1∑

j=1

(xj,n − xj+1,n)|wα(xj,n)P (xj,n)|p
∣
∣
∣
∣
∣
∣

≤ η/2.

Together with (5.23), this leads to (5.20).

�

Recall the definition of Sn from (2.5). For the sake of the continuation of the proof, we (re-)define Sn to
hold for any {yj}Mj=1 ⊂ R (and, as before, for C = {xM < · · · < x1} ⊂ R).

Sn({yj}Mj=1; C) = arg min
P∈Πn

M−1∑

j=1

(yj − P (xj))
2
(xj − xj+1)w

2
α(xj). (5.25)

Clearly, the relationship between (5.25) and (2.5) is that

Sn(g) ≡ Sn({w−1
α (xj) g (xj)}Mj=1). (5.26)

Theorem 5.3 will be deduced from the following proposition.

Proposition 5.2. Let Cn be as in Theorem 5.3, and (5.17) be satisfied with C(α) = c(α)/8 where c(α) is
as in Theorem 5.4. Then for any {yj}Mj=1 ⊂ R

‖Sn({yj}Mj=1; Cn)wα‖∞ ≤ c(x1,n − xM,n)n
1−1/α max

1≤j≤M
wα(xj,n)|yj |. (5.27)

Proof. Our assumptions imply that Cn = {xj,n}Mj=1 satisfies the conditions of Theorem 5.4 with p = 2,

η = 1/4. Let νn denote the measure that associates the mass (xj,n−xj+1,n)w
2
α(xj,n) with xj,n, 1 ≤ j ≤ M−1.

Let G be the matrix defined by

Gj,k =

ˆ

R

pk(t)pj(t)dνn(t), j, k = 0, 1, · · · , n. (5.28)

If P =
∑n

k=0 akpk ∈ Πn, then ‖wαP‖22 =
∑n

k=0 a
2
k, and

M−1∑

j=1

(xj,n − xj+1,n)|wα(xj,n)P (xj,n)|2 =

n∑

j,k=0

Gj,kajak.

Therefore, (5.20) (used with p = 2, η = 1/4) can be rewritten in the form

(3/4)|a|22 ≤ aTGa ≤ (5/4)|a|22, a ∈ Rn+1. (5.29)

This implies that G is positive definite, and hence, invertible. Since G is symmetric, so is G−1 symmetric
and positive definite. Let R be a right triangular matrix so that the Cholesky decomposition G−1 = RRT

holds. The estimates (5.29) implies that

(4/5)|a|22 ≤ |Ra|22 ≤ (4/3)|a|22, a ∈ Rn+1. (5.30)

It is easy to see from the definitions that the system of polynomials defined by

p̃k(t) =

k∑

j=0

Rj,kpk(t), k = 0, · · · , n, (5.31)

satisfies for j, k = 0, 1, · · · , n,
ˆ

R

p̃k(t)p̃k(t)dνn(t) =

{
1, if k = j,
0, otherwise.

(5.32)

Therefore, for x ∈ R,

Sn({yj}Mj=1; Cn)(x) =
M−1∑

j=1

(xj,n − xj+1,n)w
2
α(xj,n)yj

n∑

ℓ=0

p̃ℓ(xj,n)p̃ℓ(x). (5.33)
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In particular, using Schwarz inequality, we get for all x ∈ R,

∣
∣wα(x)Sn({yj}Mj=1; Cn)(x)

∣
∣ ≤







M−1∑

j=1

(xj,n − xj+1,n)







{

max
1≤j≤M−1

|wα(xj,n)yj |
}

×
{

max
1≤j≤M−1

wα(x)wα(xj,n)

∣
∣
∣
∣
∣

n∑

ℓ=0

p̃ℓ(xj,n)p̃ℓ(x)

∣
∣
∣
∣
∣

}

≤ (x1,n − xM,n)

{

max
1≤j≤M−1

|wα(xj,n)yj |
}

×max
t∈R

{

w2
α(t)

n∑

ℓ=0

(p̃ℓ(t))
2

}

. (5.34)

Let t ∈ R, and p = (p0(t), · · · , pn(t))T ∈ Rn+1. Using (5.31) and (5.30), we see that
n∑

ℓ=0

(p̃ℓ(t))
2 = |Rp|22 ≤ (5/4)|p|22 = (5/4)

n∑

ℓ=0

pℓ(t)
2.

Thus, (5.34) yields

max
x∈R

∣
∣wα(x)Sn({yj}Mj=1; Cn)(x)

∣
∣ ≤ (5/4)(x1,n − xM,n)

×
{

max
1≤j≤M−1

|wα(xj,n)yj |
}

×max
t∈R

{

w2
α(t)

n∑

ℓ=0

pℓ(t)
2

}

. (5.35)

It is proved in [27, Theorem 3.2.5] that

max
t∈R

{

w2
α(t)

n∑

ℓ=0

pℓ(t)
2

}

≤ cn1−1/α.

Together with (5.35), this implies (5.27). �

Proof of Theorem 5.3. Let P ∈ Πn be arbitrary. It is clear from (2.5), (5.25), (5.26) and linearity of Sn that

Sn

(
{g(xj,n)w

−1
α (xj,n)− P (xj,n)}Mj=1

)
= Sn

(
{g(xj,n)w

−1
α (xj,n)}Mj=1

)
− Sn

(
{P (xj,n)}Mj=1

)

= Sn(g)− P.
(5.36)

Set C(α) as in Proposition 5.2. Then (5.27) shows that

‖(f − Sn(g))wα‖∞ ≤ ‖(f − P )wα‖∞ + ‖(Sn(g)− P )wα‖∞

≤ ‖(f − P )wα‖∞ +

(

c(x1,n − xM,n)n
1−1/α

× max
1≤j≤M

wα(xj,n)|g(xj,n)w
−1
α (xj,n)− P (xj,n)|

)

.

Now, taking (2.4) into account,

max
1≤j≤M

wα(xj,n)
∣
∣g(xj,n)w

−1
α (xj,n)− P (xj,n)

∣
∣ = max

1≤j≤M
wα(xj,n)

∣
∣f(xj,n)− w−1

α (xj,n)φ(xj,n)− P (xj,n)
∣
∣

≤ max
1≤j≤M

|φ(xj,n)|+ ‖(f − P )wα‖∞,

and, since [xM,n, x1,n] ⊇ ∆n (2, α, 1/8), we conclude that

‖(f − Sn(g))wα‖∞ ≤ ‖(f − P )wα‖∞ + c(x1,n − xM,n)n
1−1/α {‖(f − P )wα‖∞ + ε}

≤ c(x1,n − xM,n)n
1−1/α {‖(f − P )wα‖∞ + ε} .

Since P ∈ Πn was arbitrary, this completes the proof. �
17



In order to extend the estimate in Theorem 5.3 to the complex domain, it is tempting to use part (b) of
Theorem 4.1. However, since f − Sn(g) is not a polynomial, we cannot do so directly. Therefore, we will
estimate first Sn(g)− Ln(f), and then use Theorem 4.1.

Proof of Theorem 5.2. In view of (5.18) and (5.4), we have

‖(f − Sn(g))wα‖∞ w
ρ(α, τ, λ)n

nn/λ−n/α
+ ε. (5.37)

This proves (5.13).

Let |z| ≤ rn. Using (5.5), this implies that

‖(Ln(f)− Sn(g))wα‖∞ w
ρ(α, τ, λ)n

nn/λ−n/α
+ ε. (5.38)

Since Ln(f)− Sn(g) ∈ Πn, we may use Theorem 4.1 to obtain for z ∈ C:

|Ln(f)(z)− Sn(g)(z)| w
(
ρ(α, τ, λ)n

nn/λ−n/α
+ ε

)

exp(nU(z/an)− nFα). (5.39)

Together with (5.2) (applied with bn = rn), this leads to (5.15).

Similarly, observing that for |z| > rn,

exp(nU(z/an)) w

( |z|
an

)n

,

and using (5.39) we deduce that

|Ln(f)(z)− Sn(g)(z)| w exp
(
τ |z|λ

)
(

1 +
nn/λ−n/α

ρ(α, τ, λ)n
ε

)[( |z|
an

)n

e−nFα
ρ(α, τ, λ)n

nn/λ−n/α
exp

(
−τ |z|λ

)
]

. (5.40)

Taking into account the definition of ρ(α, τ, λ) and an and Fα, and the fact that7

|z|n exp(−τ |z|λ) ≤
( n

τλ

)n/λ

exp(−n/λ),

we deduce that the expression in the square brackets in (5.40) is bounded from above by 1, and we obtain

|Ln(f)(z)− Sn(g)(z)| w exp(τ |z|λ)
(

1 +
nn/λ−n/α

ρ(α, τ, λ)n
ε

)

.

Using (5.3), this leads to (5.16). It is easy to verify that all the relations hold uniformly on compact subsets
in z. �

5.2. Asymptotics as ε → 0. While Theorem 5.2 does not require ε > 0, we examine in the rest of this
section the noisy case when ε > 0 and prove Theorem 2.1. In this case, the perturbation level ε would

dominate the term
ρ(α, τ, λ)n

nn/λ−n/α
if n is too large.

In this subsection we use the shorthand notation

µ :=
1

λ
− 1

α
(5.41)

ρ := ρ (α, τ, λ) =
βα

2
(τλ)

1
λ expµ, (5.42)

where βα is defined in (2.6).

Definition 5.2. The Lambert’s W-function W is implicitly defined as the (multivalued) solution to the
equation

W (zez) = z. (5.43)

It is known that the single-valued branch W > 1 satisfies [17]

W (x) = log x− log log x+ o (1) , x → ∞ (5.44)

7It can be easily verified that for t ≥ rn the function tn exp
(

−τtλ
)

is decreasing in t.
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Definition 5.3. Given α, τ, λ and ε > 0, we define

n (ε, α, τ, λ) :=

⌊
1

q
log

1

ε

⌋

, (5.45)

where

q = q (ρ, µ, ε) = µW
(

ρ−
1
µ log 1

ε

µ

)

, (5.46)

µ, ρ are given by (5.41), (5.42), and W is the Lambert’s W-function (see Definition 5.2).

We recall the asymptotic notations from Definition 2.2 and Definition 5.1. The proposition below relates
between these two, in our setting.

Proposition 5.3. Let n be as defined in (5.45). Then:

(1) n is the largest integer n such that

ρnn−µn ≥ ε. (5.47)

(2) For any sequence A (n) with A (n) w ρnn−µn (resp. A (n) v ρnn−µn) it holds that A (n) / ε (resp.
A (n) ' ε).

Proof. The exact solution to ρnn−µn = ε is given by

n =
1

q
log

1

ε
,

which can be checked by direct substitution. In more detail:

log
1

ε
= log

(
nµ

ρ

)n

= n

[

log
nµ

ρ

]

= nµ

[

logn− 1

µ
log ρ

]

= nµ log
{

nρ−
1
µ

}

1

µ
ρ−

1
µ log

1

ε
= nρ−

1
µ log

{

nρ−
1
µ

}

.

Applying W to both sides and using (5.43) we have

W
(
1

µ
ρ−

1
µ log

1

ε

)

= log
{

nρ−
1
µ

}

.

Now since W (x) expW (x) = x, we have by exponentiation of the preceding formula

1
µρ

− 1
µ log 1

ε

W
(

1
µρ

− 1
µ log 1

ε

) = expW
(
1

µ
ρ−

1
µ log

1

ε

)

= nρ−
1
µ

log 1
ε

µW
(

1
µρ

− 1
µ log 1

ε

) = n.

This proves (5.47).

To show the second part of the proposition, put a = a (ε) = n (ε) and b = b (ε) = 1
q log

1
ε , so that b−1 ≤ a ≤ b

and ρbb−µb = ε. Denote t := 1− 1
b , so a ≥ bt. We have

ρaa−µa ≤ ρbt (bt)
−µbt

= εtt−µbt = ε

(
1

ε

) q

log 1
ε

+
µt log 1

t
q

.

Furthermore, for any δ > 0 we have

(1 + δ)
a ≤ (1 + δ)b =

(
1

ε

)log(1+δ)/q

.
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Now, using (5.44) and (5.46), clearly there exists ε0, depending on α, τ, λ such that for ε < ε0 we have

µ

2
log log

1

ε
≤ q(ε) ≤ 2µ log log

1

ε
. (5.48)

Now let c1 := η > 0 be given as in Definition 2.2. Choosing δ = exp
(
η
2

)
− 1 (i.e. log (1 + δ) = η

2 ), we have
from Definition 5.1 that there exists c > 0 such that

A(a) ≤ c · (1 + δ)aρaa−µa

≤ c · ε
(
1

ε

) q

log 1
ε

+
µt log 1

t
q + η

2q

Taking (5.48) into account, it is sufficient to show that there exists Cη such that

(
1

ε

) q

log 1
ε

+
µt log 1

t
q + η

2q

≤ Cη

(
1

ε

) η
q

, ε < ε0.

Taking logarithm of both sides, this is equivalent to

log 1
ε

q

(
q2

log 1
ε

+ µt log
1

t
− η

2

)

≤ logCη.

Clearly, the expression in the left-hand side attains a maximum for some 0 < εη < ε0. The “/" direction
follows. The “'” direction is immediate since ρaa−µa ≥ ρbb−µb = ε. �

Denote

δ (z) := U (z)− Fα =

ˆ 1

−1

log |z − t| dvα (t) +
1

α
+ log 2, (5.49)

where vα is the Ullman’s distribution defined in (4.2). In case of α = 2, the function δ(z) is explicitly given
by (3.1).

Next, recall the definition of rn in (5.14).

Proposition 5.4. For any c ≥ 1 independent of ε we have

lim
ε→0

δ(z)

q (ε)
=

{
0 if |z| = c (5.50)

1 for any z = zε with |zε| = c · rn/an. (5.51)

Proof. Since limε→0 q = ∞ and δ is independent of ε, (5.50) follows immediately.

On the other hand,
rn
an

=
( n

τλ

) 1
λ

β−1
α n− 1

α =
eµ

2ρ
nµ,

and therefore by a simple computation, using (5.44) and (5.46) we obtain

lim
ε→0

1

q (ε)
log

crn
an

= 1.

Therefore (5.51) immediately follows:

lim
ε→0

1

q (ε)

[
ˆ 1

−1

log |zε − t|dvα(t)− Fα

]

= lim
ε→0

1

q(ε)







log

crn
an

+

ˆ 1

−1

log

∣
∣
∣
∣
1− tan

crn

∣
∣
∣
∣
dvα (t)

︸ ︷︷ ︸

→0

−Fα







= 1. �

Proposition 5.5. Let A(n) and B(n) be arbitrary sequences satisfying

A (n) w ρnn−µn,

B (n) v ρnn−µn.
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Then for ε ≪ 1, and 1 / |z| / rn/an we have

A (n) exp
(
nU (z)− nFα

)
/ ε1−

1
q δ(z),

B (n) exp
(
nU (z)− nFα

)
' ε1−

1
q δ(z).

Proof. Plugging (4.3) and (5.45), and using an argument similar to Proposition 5.3, it is easy to see that,
uniformly on compact sets in z ∈ C,

exp
(
n {U (z)− Fα}

)
≈ ε−

1
q [
´ 1
−1

log|z−t|dvα(t)−Fα].

Combining this with Proposition 5.3 and (5.49) provides the conclusion. �

We are now in a position to complete the proof of Theorem 2.1.

Proof of Theorem 2.1. We put n = n (ε, α, τ, λ) and

c1 := C (α) from Theorem 5.3 (5.52)

Furthermore, by definition of ∆n in (4.10) for large enough n we shall have ∆n (2, α, 1/8) ⊆
[
− 4

3an,
4
3an

]
.

Therefore in particular for small enough ε (2.7) and (2.8) will imply the sampling extent conditions of
Theorem 5.2. Applying this theorem and rescaling z → anz we obtain, uniformly in compact subsets in z,

|f(anz)− Sn(g)(anz)| w
{

ε exp(nU(z)− nFα) for |z| ≤ rn/an, (5.53)

exp
(
τ |anz|λ

)
for |z| > rn/an. (5.54)

Combining (5.53), (5.54), (4.5) and Proposition 5.3 we obtain (2.9) 8, clearly uniformly on compact subsets
in z. The rest of the assertions follow from Proposition 5.5 and Proposition 5.4. �

5.3. Optimality. We use the same notations as in Subsection 5.2.

Proof of Theorem 2.2. In view of [26, Lemma 3.3]9, we have for every polynomial P ∈ Πn,

|||P |||τ,λ w nµnρ−n‖wαP‖∞. (5.55)

Therefore, there exists a sequence Mn such that limn→∞ M
1/n
n = 1, and the polynomials defined by

P ∗
n (z) := M−1

n ρnn−µn Tn(z)
‖Tnwα‖∞

(5.56)

are all in Bτ,λ (just substitute ‖wαP
∗
n‖∞ = M−1

n ρnn−µn into (5.55)). We also observe that

‖wαP
∗
n
‖∞ ≤ M−1

n
ε / ε.

Now, let R (respectively, I) be any recovery (respectively, information) operator and (2.12) be satisfied.
Then

‖I(P ∗
n
)‖Y ≤ M−1

n
ε. (5.57)

Define ξ (ε) := M−1
n

. We have (cf. (2.14))

E(τ, λ, ξ (ε) , z;R, I) ≥
∣
∣P ∗

n
(anz)−R (I(P ∗

n
)− I(P ∗

n
)) (anz)

∣
∣ =

∣
∣P ∗

n
(anz)−R(0)(anz)

∣
∣, (5.58)

where 0 denotes the zero element of Y . The same inequality holds also when P ∗
n

is replaced by −P ∗
n
. Thus,

|P ∗
n
(anz)| =

1

2
|(P ∗

n
(anz)−R(0)(anz))− (−P ∗

n
(anz)−R(0)(anz))| ≤ E(τ, λ, ξ(ε), z;R, I). (5.59)

In view of Proposition 4.1 we have

|P ∗
n
(anz)| ' ε exp(nU(z)− nFα), (5.60)

the relation holding uniformly on compact sets for z ∈ C \ [−1, 1]. Applying Proposition 5.5 leads to (2.16)
and concludes the proof with the “dark object” fε := P ∗

n
. �

8Indeed, if |z| ≤ an, z ∈ R then U (z/an) = | βαz

βαn
1/α |α + Fα and so ε exp (nU (z/an) − nFα) = ε exp (|z|α).

9 To reconcile the notation from [26], note that the constant F there is in fact equal to −Fα − log βα.
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