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Moment vanishing of piecewise solutions of
linear ODEs

Dmitry Batenkov and Gal Binyamini

Abstract We consider the “moment vanishing problem” for a general class of
piecewise-analytic functions which satisfy on each continuity interval a linear ODE
with polynomial coefficients. This problem, which essentially asks how many zero
first moments can such a (nonzero) function have, turns out tobe related to several
difficult questions in analytic theory of ODEs (Poincare’s Center-Focus problem)
as well as in Approximation Theory and Signal Processing (“Algebraic Sampling”).
While the solution space of any particular ODE admits such a bound, it will in the
most general situation depend on the coefficients of this ODE. We believe that a
good understanding of this dependence may provide a clue forattacking the prob-
lems mentioned above.
In this paper we undertake an approach to the moment vanishing problem which
utilizes the fact that the moment sequences under consideration satisfy a recurrence
relation of fixed length, whose coefficients are polynomialsin the index. For any
given operator, we prove a general bound for its moment vanishing index. We also
provide uniform bounds for several operator families.

1 Introduction

Let f : [a,b]→ R be a bounded piecewise-continuous function with points of dis-
continuity (of the first kind)

a= ξ0 < ξ1 < · · ·< ξp < ξp+1 = b,
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satisfying on each continuity interval
[

ξ j ,ξ j+1
]

a linear homogeneous ODE

D f ≡ 0, (1)

whereD is a linear differential operator of ordern with polynomial coefficients:

D= pn(x)∂ n+ · · ·+ p1(x)∂ + p0(x) I, ∂ =
d
dx

, deg p j ≤ d j . (2)

We say that suchf belongs to the classPD (D, p). The union of all suchPD (D, p)
is the classPD of piecewise D-finite functions, which was first studied in [3].

Any f ∈ PD has finite moments of all orders:

mk ( f ) =
ˆ b

a
xk f (x)dx, k= 0,1,2, . . . (3)

We consider the following questions.

Problem 1. GivenD andp, determine themoment vanishing indexof PD (D, p),
defined as

σ (D, p)
def
= sup

f∈PD(D,p), f 6≡0
{k : m0 ( f ) = · · ·= mk ( f ) = 0}+1.

In Theorem 3 below we shall prove that the moment vanishing index is always finite.
Consequently, the following problem becomes meaningful.

Problem 2. Find natural familiesF ⊂ PD which admit a uniform bound on the
moment vanishing index, i.e. for which

σ (F ) = sup
PD(D,p)⊂F

σ (D, p)<+∞.

Our main results, presented in Section 4, provide a general bound forσ (D, p) in
terms ofD. As a result, several examples of familiesF admitting uniform bound as
above are given. The main technical tool is the recurrence relation satisfied by the
moment sequence, established previously in [3].

Our main application is the problem of reconstructing functions f ∈ PD from a
finite number of their moments. Inverse moment problems appear in some areas
of mathematical physics, for instance heat conduction and inverse potential theory
[1, 9], as well as in statistics. One particular reconstruction technique, introduced
in [3] and further extended to two-dimensional setting in [4], can be regarded as
a prototype for numerous “algebraic” reconstruction methods in signal processing,
such as finite rate of innovation [15] and piecewise Fourier inversion [2, 6]. These
methods, being essentially nonlinear, promise to achieve better reconstruction ac-
curacy in some cases (as demonstrated recently in [2, 6]), and therefore we believe
their study to be important. In Section 2 below we show that ananswer to Problem 2
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would in turn provide a bound on the minimal number of moments(measurements)
required for unique reconstruction of anyf ∈ F . In essence, the results of this pa-
per can be regarded as a step towards understanding the rangeof applicability of the
piecewise D-finite reconstruction method to general signals in PD. See Section 2
for further details.

Given a familyF ⊂ PD , consider the corresponding family of moment generat-
ing functions

{

I f (z)
}

f∈F
, whereI f (z) = ∑∞

k=0mk ( f )z−k−1. Obtaining information
on the moment vanishing index is in fact an essential step towards studying the an-
alytic properties ofI f , in particular a bound on its number of zeros near infinity
(as provided by the notion of “Taylor Domination”, see [5]),as well as conditions
for its identical vanishing. In turn, these questions play acentral role in studies of
the Center-Focus and Smale-Pugh problems for the Abel differential equation, see
[7, 14] and references therein.

The moment vanishing problem has been previously studied inthe complex set-
ting by V.Kisunko [12]. He showed that a uniform boundσ (F ) exists for families
F consisting of non-singular operators, by using propertiesof Cauchy type inte-
grals. In contrast, in this paper we consider the real setting only, while proving uni-
form bounds for some singular (as well as regular) operator families. Our method
is based on the linear recurrence relation satisfied by the moment sequence. Using
this method, in Section 5 we provide an alternative proof of Kisunko’s result, stat-
ing that the moment generating functionI f (z) of some f ∈ PD (D, p) satisfies a
non-homogeneous ODE

D I f (z) = Rf (z)

for a very special rational functionRf (z), which depends onD and on the values of
f at the discontinuities.

In Section 6 we provide an interpretation of our main result in the language of
Fuchsian theory of ODE.

1.1 Acknowledgements

The authors would like to thank Y.Yomdin for useful discussions.

2 Moment reconstruction

We start by defining some preliminary notions.

Definition 1. The Pochhammer symbol(i) j denotes the falling factorial

(i) j
def
= i(i −1) · . . . · (i − j +1), i ∈R, j ∈ N
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and the expression(i) j is defined to be zero fori < j.

Definition 2. GivenD of the form (2), thebilinear concomitant([11, p.211]) is the
homogeneous bilinear form, defined for any pair of sufficiently smooth functions
u(x) ,v(x) as follows (all symbols depend onx):

PD (u,v)
def
= u

{

p1v− ∂ (p2v)+ · · ·+(−1)n−1 ∂ n−1 (pnv)
}

(4)

+ u′
{

p2v− ∂ (p3v)+ · · ·+(−1)n−2 ∂ n−2 (pnv)
}

+ . . .

+ u(n−1) · (pnv) .

Proposition 1 (Green’s formula, [11]). GivenD of the form(2), let the formal
adjoint operator be defined by

D
∗ {·}

def
=

n

∑
j=0

(−1) j ∂ j {p j (x) ·
}

.

Then for any pair of sufficiently smooth functions u(x) ,v(x) the following identity
holds:
ˆ b

a
v(x) (Du)(x)dx−

ˆ b

a
u(x) (D∗ v)(x)dx= PD (u,v)(b)−PD (u,v)(a) . (5)

Theorem 1 ([3]).Let f ∈PD (D, p) withD of the form(2). Denote the discontinu-

ities of f by a= ξ0 < ξ1 < · · ·< ξp < ξp+1 = b. Then the moments mk =
´ b

a f (x)dx
satisfy1 the recurrence relation

n

∑
j=0

d j

∑
i=0

ai, j (−1) j (i + k) j mi− j+k = εk, k= 0,1, . . . , (6)

where

εk =−
p

∑
j=0

{

PD
(

f ,xk
)(

ξ−
j+1

)

−PD
(

f ,xk
)(

ξ+
j

)}

. (7)

Proof. Apply Green’s formula (5) to the identity

ˆ ξ j+1

ξ j

xk (D f ) (x)dx≡ 0

for eachj = 0, . . . , p and sum up. The result is

1 For consistency of notation, the sequence{mk} is understood to be extended with zeros for
negativek.
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p

∑
j=0

ˆ ξ j+1

ξ j

f (x)D∗
{

xk
}

dx = −
p

∑
j=0

{

PD
(

f ,xk
)(

ξ−
j+1

)

−PD
(

f ,xk
)(

ξ+
j

)}

ˆ b

a
f (x)D∗

{

xk
}

dx = εk

The left-hand side of the last formula is precisely the linear combination of the
moments given by the left-hand side of (6). This finishes the proof. ⊓⊔

Now consider the problem of recoveringf ∈ PD (D, p)⊂PD from the moments
{m0 ( f ) , . . . ,mN ( f )} (the operatorD is assumed unknown in the most general set-
ting). Based on the recurrence relation (6), we demonstratein [3] that an exact re-
covery is possible, provided that the numberN ∈ N is sufficiently large. However,
the question of obtaining an upper bound forN turns out to be non-trivial, as we
now demonstrate.

Definition 3. GivenD andp, themoment uniqueness indexτ (D, p) is defined by

τ (D, p)
def
= sup

f ,g∈PD(D,p), f 6≡g

{

k : mj ( f ) = mj (g) , 06 j 6 k
}

+1.

In other words, givenD andp, at leastτ (D, p) first moments off ∈PD (D, p) are
necessary for unique reconstruction off .

Recalling boundedness ofσ (D, p) (see Theorem 3 below), we immediately obtain
the following conclusion.

Lemma 1. For any operatorD and any p

τ (D, p)≤ σ (D,2p) .

Proof. Let N = σ (D,2p). Takef1, f2 havingp jump points each, satisfyingD f1 ≡
0,D f2 ≡ 0 on each continuity interval such that

m0 ( f1) = m0 ( f2)

. . .

mN ( f1) = mN ( f2) .

The functiong = f1 − f2 has at most 2p jumps, and it satisfiesDg ≡ 0 on each
continuity interval. The firstN moments ofg are zero, thereforeg ≡ 0 and thus
f1 ≡ f2. Thereforeτ (D, p)≤ N. ⊓⊔

Consequently, in order to uniquely reconstruct an unknownf ∈ F ⊂ PD , it is
sufficient to get a uniform boundσ (F ) for the family F . Perhaps the most nat-
ural choice for such families is when the parametersp,n,

{

d j
}n

j=0 are fixed. Un-
fortunately, without making additional assumptions, the moment vanishing index of
such families cannot be uniformly bounded. This can be seen from the following
example.
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Example 1.Let Dm denote the Legendre differential operator

Dm =
(

1− x2) d2

dx2 −2x
d
dx

+m(m+1)I,

and considera = −1, b = 1 andp = 0. It is well-known that for eachm∈ N, the
regular solution ofDm f = 0 is Lm - the Legendre polynomial of degreem. Since
the firstm−1 moments ofLm are zero, we conclude that

σ (Dm) = m

and thereforeσ (D) cannot be uniformly bounded in terms of the combinatorial type
of D only.

Using the subsequent results, in Section 6 we shall in fact provide an explanation of
this behaviour.

3 Generalized power sums

Proposition 2. The sequence{εk}, given by Theorem 1, is of the form

εk =
p+1

∑
j=0

n−1

∑
ℓ=0

ξ k−ℓ
j (k)ℓ cℓ, j , (8)

where each cℓ, j is a homogeneous bilinear form in the two sets of variables

{pm(ξ j), p
′
m(ξ j), . . . , p

(n−1)
m (ξ j)}

n
m=0,

{ f (ξ+
j )− f (ξ−

j ), f ′(ξ+
j )− f ′(ξ−

j ), . . . , f (n−1)(ξ+
j )− f (n−1)(ξ−

j )}.

Proof. Denote for conveniencef (a−) = f (b+) = 0. Now consider the definition of
{εk} given by (7). Rearranging terms, we write

εk =
p+1

∑
j=0

{

PD
(

f ,xk
)(

ξ+
j

)

−PD
(

f ,xk
)(

ξ−
j

)}

.

Furthermore, using the fact that the functions{pm(x)}n
m=0 andxk are continuous at

eachξ j , we have
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PD
(

f ,xk
)(

ξ+
j

)

−PD
(

f ,xk
)(

ξ−
j

)

= (9)

=
{

f
(

ξ+
j

)

− f
(

ξ−
j

)}

×

×
{

p1 (ξ j )ξ k
j −

(

p2 (ξ j)kξ k−1
j + p′2 (ξ j )ξ k

j

)

+ . . .
}

+ . . .

+
{

f (n−1)
(

ξ+
j

)

− f (n−1)
(

ξ−
j

)}

pn (ξ j )ξ k
j .

Now using the definition (4), the claim is evident. ⊓⊔

The expression (8) forεk is nothing else but a generalized power sum. Let us recall
several well-known facts about them (see e.g. [8, Section 2.3] or [13]).

Proposition 3. Let the sequence sk be of the form

sk =
p+1

∑
j=0

n−1

∑
ℓ=0

aℓ, j (k)ℓ ξ k−ℓ
j aℓ, j ,ξ j ∈ C. (10)

Then it satisfies the following linear recurrence relation with constant coefficients
of length n(p+2)+1:

(p+1

∏
j=0

(E−ξ j I)n
)

sk = 0 (11)

whereE is the forward shift operator in k andI is the identity operator.

Conversely, the fundamental set of solutions of the recurrence relation(11) is
{

ξ k
0 ,kξ k−1

0 , . . . ,(k)n−1 ξ k−n+1
0 , . . . , ξ k

p+1,kξ k−1
p+1, . . . ,(k)n−1ξ k−n+1

p+1

}

.

Corollary 1. The sequence sk as above, which is not identically zero, can have at
most n(p+2)−1 first consecutive zero terms s0 = · · ·= sn(p+2)−2 = 0.

Proof. If s0 = · · · = sn(p+2)−1 = 0, then by the recurrence relation (11) we would
have automaticallysn(p+2) = sn(p+2)+1 = · · ·= 0. ⊓⊔

Corollary 2. Assume that the numbers
{

ξ j
}p+1

j=0 ⊂ C are pairwise distinct. Let the

sequence sk be given by(10), with a-priori unknown
{

ai, j
}

. If sk = 0 for all k ∈ N,

then necessarily all the coefficients
{

ai, j
}

are zero.

4 Main results

Let us now return to our main goal, namely, obtaining upper bounds on the moment
vanishing indexσ (D, p) .
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Definition 4. GivenD of the form (2), denote for eachj = 0, . . . ,n

α j
def
= d j − j,

and also
α = α (D)

def
= max

j=0,...,n
α j .

Proposition 4. Let f ∈ PD (D, p). Then vanishing of the first(p+2)n+α (D)
moments of f (i.e. m0 = · · · = m(p+2)n+α−1 = 0) implies identical vanishing of the
sequence{εk} defined by Theorem 1.

Proof. Consider the recurrence relation (6). Denote its left-handside byµk. Obvi-
ously, since eachµk is a linear combination of the moments, we have

µ0 = · · ·= µn(p+2)−1 = 0.

Consequently, the corresponding right-hand sides also vanish, i.e.

ε0 = · · ·= εn(p+2)−1 = 0. (12)

The conclusion follows immediately from Corollary 1. ⊓⊔

Now we establish our main result.

Theorem 2.Let f ∈ PD (D, p), f 6≡ 0 with discontinuity points

a= ξ0 < ξ1 < · · ·< ξp < ξp+1 = b.

Assume that pn (ξ j) 6= 0 for at least oneξ j as above. Then at most

(p+2)n+α (D)−1

first moments of f can vanish (i.e. m0 = · · ·= m(p+2)n+α−2 = 0).

Proof. Assume by contradiction that the first(p+2)n+α moments off vanish,
i.e.

m0 = · · ·= mn(p+2)+α−1 = 0.

By Proposition 4 and Corollary 2 we immediately conclude that

cℓ, j = 0, j = 0, . . . , p+1, ℓ= 0, . . . ,n−1,

where
{

cℓ, j
}

are described by Proposition 2. Now we take the concretej for which
pn (ξ j) 6= 0. This means that the operatorD is regular atξ j , and consequently each
solution toD f = 0 in the neighborhood ofξ j is uniquely determined by the initial
valuesf (ξ j) , . . . , f (n−1) (ξ j). We claim that
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f
(

ξ+
j

)

− f
(

ξ−
j

)

= f ′
(

ξ+
j

)

− f ′
(

ξ−
j

)

= · · ·= f (n−1)
(

ξ+
j

)

− f (n−1)
(

ξ−
j

)

= 0.

(13)
In this case, we would immediately conclude that the function f is analytic atξ j

(being a solution of analytic ODE), contradicting the assumption thatξ j is a point
of discontinuity of f .

To prove (13), we proceed as follows. By Proposition 2 it is easy to see that the term
cn−1, j (k)n−1 ξ k−n+1

j is in fact equal to

{

f
(

ξ+
j

)

− f
(

ξ−
j

)}

(k)n−1 pn (ξ j)

in the expression forεk. Sincepn (ξ j) 6= 0, we conclude thatf
(

ξ+
j

)

− f
(

ξ−
j

)

= 0.

Substituting this into (9), we see that the next termcn−2, j (k)n−2 ξ k−n+2
j equals

{

f ′
(

ξ+
j

)

− f ′
(

ξ−
j

)}

(k)n−2 ξ k−n+2
j pn (ξ j) ,

and thusf ′
(

ξ+
j

)

− f ′
(

ξ−
j

)

= 0. Proceeding in this manner, we arrive at (13). This

finishes the proof of Theorem 2. ⊓⊔

As a first consequence, we have the real-valued version of theresult by Kisunko
[12].

Corollary 3. For every n,d > 0 and p> 0 consider the family

F
(1)
n,p,d =

{

f ∈ PD (D, p) : D=
n

∑
j=0

p j (x)∂ j , α (D) = d, pn (x) 6= 0 on [a,b]

}

.

Then
σ
(

F
(1)
n,p,d

)

6 (p+2)n+d−1.

Since the leading coefficientpn (x) cannot vanish at more than degpn points, we
also have the following result.

Corollary 4. For every n,d > 0 and p> 0 consider the family

F
(2)
n,p,d =

{

f ∈ PD (D, p) : D=
n

∑
j=0

p j (x)∂ j , α (D) = d, degpn < p+2

}

.

Then
σ
(

F
(2)
n,p,d

)

6 (p+2)n+d−1.

Let us now try to establish what happens in the general case. Let f ∈ PD (D, p),
f 6≡ 0. Consider two possibilities.
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1. The sequence{εk} does not vanish identically. In this case, at least some of its
initial terms

{

ε0, . . . ,εn(p+2)−1
}

must be nonzero (Corollary 1). But this imme-
diately implies that some of the firstn(p+2)+α −1 moments must be nonzero
as well (otherwise the equality (6) cannot hold).

2. The sequence{εk} vanishes identically, but Theorem 2 is not applicable. In this
case the recurrence relation (6) becomes homogeneous. We rewrite it in the form

α

∑
ℓ=−n

qℓ (k)mk+ℓ = 0, k= 0,1, . . . , (14)

where

qℓ (k)
def
=

n

∑
j=0

(−1) j aℓ+ j , j (k+ ℓ+ j) j . (15)

The leading coefficientqα (k) may have positive integer zeros. LetΛ (D) denote
the largest such zero. Then we claim that no more thanα +Λ (D) moments can
vanish. Indeed, starting withk = Λ (D)+1 we can safely divide the recurrence
(14) byqα (k) and obtain

mk+α =
α−1

∑
ℓ=−n

rℓ (k)mk+ℓ, k> Λ (D)+1,

whererℓ (k) are some rational functions with non-vanishingdenominators. There-
fore if the firstΛ (D)+α +1 moments are zero, then all the rest of the moments
must vanish, implying vanishing off itself.

Thus we have proved the following result.

Theorem 3.For everyD, p we have

σ (D, p)6 max{n(p+2)−1, Λ (D)}+α (D) .

In Section 6, we demonstrate that in the case of Fuchsian differential operators, the
numberΛ (D) has a well-known interpretation.

5 Moment generating function

In this section we provide an alternative proof for the result of Kisunko [12] con-
cerning moment generating functions.

Proposition 5. Let f ∈ PD . The formal power series

I f (z)
def
=

∞

∑
k=0

mk

zk+1
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is in fact the Laurent series of the Cauchy type integral

ˆ b

a

f (t)dt
z− t

.

Proof. Write 1
z−t =

1
z

(

1
1− t

z

)

and expand into geometric series. Convergence fol-

lows immediately forz→ ∞. ⊓⊔

The generalized power sums (Section 3) also have a well-known interpretation as
the Taylor coefficients of rational functions. The following fact is well-known, and
so we omit the proof.

Proposition 6. Let the sequence{sk} be of the form(10). Then the formal generat-
ing function

g(z) =
∞

∑
k=0

sk

zk+1

is a regular at infinity rational function, with poles
{

ξ0, . . . ,ξp+1
}

, each with multi-
plicity at most n. In particular,

g(z) =
p+1

∑
j=0

n−1

∑
ℓ=0

(−1)ℓ ℓ!aℓ, j

(z− ξ j)
ℓ+1 . (16)

Theorem 4.Let f ∈ PD (D, p). Then the Cauchy integral If satisfies in the neigh-
borhood of∞ the inhomogeneous ODE

D I f (z) = Rf (z) , (17)

where Rf (z) is the rational function whose Taylor coefficients at infinity are given
by the sequenceεk as in(7). Consequently, Rf (z) is given by the explicit expression
(16), with aℓ, j replaced by cℓ, j from (8) (Proposition 2).

Proof. Consider the asymptotic expansion of the functionD I f at infinity

D I f =
∞

∑
k=0

sk

zk+1 .

By substitutingD as in (2) andI f = ∑∞
k=0

mk
zk+1 we get

D I f =
n

∑
j=0

p j (z) I ( j)
f (z) =

n

∑
j=0

d j

∑
i=0

∞

∑
k=0

mk
(−1) j (k+ j) j

zk+1+ j−i
ai, j

(k+ j−i→t) =
∞

∑
t=0

1
zt+1

n

∑
j=0

(−1) j ai, j (t + i) j mt+i− j

=
∞

∑
s=0

sk

zk+1 .
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Comparing powers ofz we have thatsk = µk whereµk denote the left-hand side of
(6). Fromµk = εk the conclusion follows. ⊓⊔

6 Fuchsian operators

In this section we employ notions from the classical Fuchsian theory of linear ODEs
in the complex domain (we used the reference [10]).

Assume that the sequence{εk} vanishes identically. In this case, the Cauchy integral
I f satisfies in the neighborhood of∞ thehomogeneous ODE

D I f = 0.

Definition 5. The operatorD is said to belong to the classR if it has at most a
regular singularity at∞.

Lemma 2. LetD ∈R. Then

1. The numbersα j (see Definition 4) satisfy

αn > α j , j = 0, . . . ,n−1. (18)

2. The characteristic exponents ofD at the point∞ are the roots of the equation

qαn (s−1) = 0,

where qℓ (k) is defined by(15).

Proof. Dividing the coefficients ofD by pn, we get the operator

∂ n+ r1(z)∂ n−1+ · · ·+ rn (z) I, r j (z) =
pn− j (z)
pn (z)

.

A necessary and sufficient condition for the point at infinityto be at most a regular
singularity of this operator is that the functionr j (z) is analytic at∞ and has a zero
there of order at leastj ([10, Theorem 9.8b]). That is,

degpn−degpn− j ≥ j.

But this is equivalent to

degpn−n > degpn− j − (n− j)

αn > αn− j .
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To prove the second statement, substitute the formal Frobenius series at infinity

g(z) =
∞

∑
k=0

bk

zs+k

into Dg = 0. By complete analogy with the calculation in Theorem 4 we get the
recurrence relation

n

∑
j=0

d j

∑
i=0

(−1) j ai, j (t + s+ i −1) j bt+i− j = 0, t = 0,1, . . . .

For t = 0 we find the highest order coefficient in this recurrence to beequal to
(i − j = α = αn)

n

∑
j=0

(−1) j (s+α + j −1) j a j+α , j = qα (s−1) .

The proof is finished. ⊓⊔

Together with Theorem 3, this immediately implies the following bound.

Corollary 5. LetD ∈R, and letλ (D) denote its largest positive integer character-
istic exponent at the point∞. ThenΛ (D) = λ (D)−1, and consequently

σ (D, p)6 max{(p+2)n,λ (D)}+dn−n−1.

Now let us return to Example 1. The following fact is well-known (e.g. [10, Section
9.10].

Proposition 7. The Legendre differential operatorDm is of Fuchsian type with sin-
gularities−1,1,∞. The characteristic exponents at∞ are m+1 and−m.

Theorem 2 is clearly not applicable. Using the formula (7), it is easy to see that

PD
(

f ,xk
)

(1) = PD
(

f ,xk
)

(−1) = 0

for any f ∈ PD, and therefore the sequence{εk} in this case is identically zero.
Consequently, we conclude that

σ (Dm,0) = m,

as expected.
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