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Moment vanishing of piecewise solutions of
linear ODEs

Dmitry Batenkov and Gal Binyamini

Abstract We consider the “moment vanishing problem” for a generas<laf
piecewise-analytic functions which satisfy on each cartjninterval a linear ODE
with polynomial coefficients. This problem, which esselhtiasks how many zero
first moments can such a (nonzero) function have, turns dug telated to several
difficult questions in analytic theory of ODEs (Poincare'snier-Focus problem)
as well as in Approximation Theory and Signal Processindgéhraic Sampling”).
While the solution space of any particular ODE admits sucbnd, it will in the
most general situation depend on the coefficients of this ODE& believe that a
good understanding of this dependence may provide a cluatticking the prob-
lems mentioned above.

In this paper we undertake an approach to the moment vagigtoblem which
utilizes the fact that the moment sequences under consiolesatisfy a recurrence
relation of fixed length, whose coefficients are polynomialghe index. For any
given operator, we prove a general bound for its moment liargsndex. We also
provide uniform bounds for several operator families.

1 Introduction

Let f : [a,b] — R be a bounded piecewise-continuous function with pointsisf d
continuity (of the first kind)

a=¢§<é1 < <ép<épr1=h,

Dmitry Batenkov

Department of Mathematics, Weizmann Institute of ScieRedovot 76100, Israel. This author is
supported by the Adams Fellowship Program of the Israel Acgdof Sciences and Humanities.
e-mail:dima.batenkov@weizmann. ac.il

Gal Binyamini
Department of Mathematics, University of Toronto, Canadmail:galbin@math.utoronto. ca


http://arxiv.org/abs/1302.0991v1
dima.batenkov@weizmann.ac.il
galbin@math.utoronto.ca
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satisfying on each continuity intervfxfj , fj+1] a linear homogeneous ODE
Df=0, 1)

where® is a linear differential operator of ordamwith polynomial coefficients:
d
D =pn(X)0"+---+ p1(X) @+ po(X)1, a:&,degpjgdj. 2

We say that suclfi belongs to the clas®”Z (D, p). The union of all such”? 2 (D, p)
is the class”Z 2 of piecewise D-finite functionsvhich was first studied irh [3].

Any f € 222 has finite moments of all orders:
b
m(f) = [ ¥fdx k=012 @)
a

We consider the following questions.

Problem 1. Given® andp, determine thenoment vanishing indest 2% (9, p),
defined as

o@®.p)%  sup  {kimp(f)=--=m(f)=0}+1
fe29(D.p), 120

In Theoreni B below we shall prove that the moment vanishidepiris always finite.
Consequently, the following problem becomes meaningful.

Problem 2. Find natural families# ¢ #2% which admit a uniform bound on the
moment vanishing index, i.e. for which

o(F)= sup 0O(D,p) < +oo.
PP(D,p)CF

Our main results, presented in Sectidn 4, provide a generaidforo (D, p) in
terms of®. As a result, several examples of familigsadmitting uniform bound as
above are given. The main technical tool is the recurrenegioa satisfied by the
moment sequence, established previousllin [3].

Our main application is the problem of reconstructing fiorts f € 22 from a

finite number of their moments. Inverse moment problems apjresome areas
of mathematical physics, for instance heat conduction awerse potential theory
[, @], as well as in statistics. One particular reconstaictechnique, introduced
in [3] and further extended to two-dimensional setting[ih gan be regarded as
a prototype for numerous “algebraic” reconstruction mdthim signal processing,
such as finite rate of innovation [115] and piecewise Fourieeision [2[ 6]. These
methods, being essentially nonlinear, promise to achietebreconstruction ac-
curacy in some cases (as demonstrated recently [in [2, &])themefore we believe
their study to be important. In Sectibh 2 below we show thatr@swer to Problei 2
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would in turn provide a bound on the minimal number of momémisasurements)
required for unique reconstruction of afiy .%#. In essence, the results of this pa-
per can be regarded as a step towards understanding theofaayg@icability of the
piecewise D-finite reconstruction method to general sigimal? 2. See Sectiohl2
for further details.

Given a family.# ¢ &%, consider the corresponding family of moment generat-
ing functions{l (2) },_. wherel; (2) = yi_omy (f) z 1. Obtaining information

on the moment vanishing index is in fact an essential stepridsvstudying the an-
alytic properties ofi¢, in particular a bound on its number of zeros near infinity
(as provided by the notion of “Taylor Domination”, séé [H} well as conditions
for its identical vanishing. In turn, these questions plaeatral role in studies of
the Center-Focus and Smale-Pugh problems for the Abel€iffeal equation, see
[7,[14] and references therein.

The moment vanishing problem has been previously studigdercomplex set-
ting by V.Kisunko [12]. He showed that a uniform bouad.#) exists for families
% consisting of non-singular operators, by using propexie€auchy type inte-
grals. In contrast, in this paper we consider the real getiimly, while proving uni-
form bounds for some singular (as well as regular) operatailfes. Our method
is based on the linear recurrence relation satisfied by theenbsequence. Using
this method, in Sectidn] 5 we provide an alternative proof isiikko’s result, stat-
ing that the moment generating functibin(z) of somef € 2 (D, p) satisfies a
non-homogeneous ODE
D1t (2) =R (2)

for a very special rational functidR; (z), which depends o® and on the values of
f at the discontinuities.

In Section[6 we provide an interpretation of our main resultbe language of
Fuchsian theory of ODE.
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2 Moment reconstruction

We start by defining some preliminary notions.
Definition 1. The Pochhammer symb(il); denotes the falling factorial

(i), £i(-1)-....(—j+1), i€R jeN
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and the expressiofi); is defined to be zero far< j.

Definition 2. Given® of the form [2), thebilinear concomitan{[11, p.211]) is the
homogeneous bilinear form, defined for any pair of suffidieamooth functions
u(x),v(x) as follows (all symbols depend o

Po (1Y) E u{prv—09 (p2v) + -+ (1) 0" (pov) | (4)
+ u'{pzv—d(pgv)+~~~+ (—1)”*20”*2(pnv)}
+ ...

+ u™ D (ppv).

Proposition 1 (Green’s formula, [11]). Given® of the form(2), let the formal
adjoint operator be defined by

@u@iewwwmw-

J:

Then for any pair of sufficiently smooth functionsu v(x) the following identity
holds:

b b
/av(x)(i)u)(x)dx—/al u(x) (D*v) (x)dx = Po (u,v) (b) — Po (u,v)(a). (5)

Theorem 1 ([3]).Let f € 222 (D, p) with © of the form(2). Denote the discontinu-
ities of f by a= &g < &1 < --- < &p < &py1 =Db. Then the moments s f;’ f (x)dx
satistl the recurrence relation

n dj

nga,j (1) (i+k);m_j=8&, k=01,.., (6)
j=0i=

T e S ) o

Proof. Apply Green’s formulal{b) to the identity
&j+1
/ X (D f)(x)dx=0
3

foreachj =0,...,pand sum up. The resultis

1 For consistency of notation, the sequer{ea¢} is understood to be extended with zeros for
negativek.
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Ji/;ﬁlf(x)@*{xk}dx: - i{P@ (f,xk) (5j;l) “Po (f,xk) (5;)}

J

/b f(x)©* {xk}dx = &

The left-hand side of the last formula is precisely the Imeambination of the
moments given by the left-hand side bf (6). This finishes tio®p a

Now consider the problem of recoverifige Z 2 (D, p) C &% from the moments
{mp(f),...,mn ()} (the operato® is assumed unknown in the most general set-
ting). Based on the recurrence relatibh (6), we demonsimdi that an exact re-
covery is possible, provided that the numbee N is sufficiently large. However,
the question of obtaining an upper bound Fbturns out to be non-trivial, as we
now demonstrate.

Definition 3. Given® andp, themoment uniqueness index®, p) is defined by

r@.p)%E  sup  {kim(f)=mj(9),0< | <k} +1
f.0e 22(D,p), f#g

In other words, giverD andp, at leastr (9, p) first moments of € % (D, p) are
necessary for unique reconstructionfof

Recalling boundedness of(D, p) (see Theoreiil3 below), we immediately obtain
the following conclusion.

Lemma 1. For any operator® and any p
T(9,p) <0 (D,2p).

Proof. LetN = g (D, 2p). Takef1, f, havingp jump points each, satisfying f; =
0,9 f, = 0 on each continuity interval such that

mo (f1) = mo(f2)

my (f,) = m(f2).

The functiong = f; — f2 has at most @ jumps, and it satisfie® g = 0 on each
continuity interval. The firsN moments ofg are zero, thereforg = 0 and thus
f1 = f,. Thereforer (D, p) <N. O

Consequently, in order to uniquely reconstruct an unkndéwh.# C £ 2, it is
sufficient to get a uniform bound (.%) for the family .#. Perhaps the most nat-
ural choice for such families is when the parametgns, {dj}?:o are fixed. Un-
fortunately, without making additional assumptions, thement vanishing index of
such families cannot be uniformly bounded. This can be semn the following
example.



6 Dmitry Batenkov and Gal Binyamini

Example 1Let ®©, denote the Legendre differential operator

o2 d

and considea = —1, b=1 andp = 0. It is well-known that for eacim € N, the
regular solution ofo, f = 0 is %, - the Legendre polynomial of degree Since
the firstm— 1 moments of%, are zero, we conclude that

0(®m)=m

and thereforer (©) cannot be uniformly bounded in terms of the combinatoriaéty
of © only.

Using the subsequent results, in Secfibn 6 we shall in factige an explanation of
this behaviour.

3 Generalized power sums

Proposition 2. The sequencgsg}, given by Theoref 1, is of the form
p+in-1

& = gogosjk% (K),ce,j, (8)

where each g; is a homogeneous bilinear form in the two sets of variables

{Pm(&), Pin(€1).- P (&)} o
{f(&) =& ), (&)= F(& ), FDE) - 1D (E )}
Proof. Denote for convenienck(a™) = f (b™) = 0. Now consider the definition of

{&} given by [). Rearranging terms, we write

p+1

=5 (oo (109) (67) o (1) 51}

Furthermore, using the fact that the functidim () };,_, andxX are continuous at
eaché;, we have
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Po (1) (&) =Pa (1) (&) = ©
= 1) (&) )
X {pl(fj)fjkf (pZ(Ej)kE]k—lJr p’z(fj)é}() +}
+..
+{f(nfl) (E;r) _ §-1) (Ef)}pn (Ej)Ejk-

Now using the definitior{{4), the claim is evident. a

The expressioni(8) fagy is nothing else but a generalized power sum. Let us recall
several well-known facts about them (see €.3. [8, Secti®haz.[13]).

Proposition 3. Let the sequence e of the form

p+1n—-1

S = Jzogoaz,j (K& agec. (10)

Then it satisfies the following linear recurrence relatioithaconstant coefficients
oflength n(p+2)+1:

(ﬁ(E—a )50 (11)

whereE is the forward shift operator in k andis the identity operator.
Conversely, the fundamental set of solutions of the reageeelation(T]) is

(B 0y 1 8 kel (0, 1 85T

Corollary 1. The sequence s above, which is not identically zero, can have at

most n(p+ 2) — 1first consecutive zero termgs -+ = Syp,2)—2 = 0.
Proof. If so = -+ = $yp;2)—1 = O, then by the recurrence relatidn {11) we would
have automaticallg,pi2) = Syp+2)11 =" =0. a

Corollary 2. Assume that the numbe{g; JP:S C C are pairwise distinct. Let the

sequenceysbe given by(I0), with a-priori unknown{a; j }. If s = 0 for all k € N,
then necessarily all the coefficierfta; ; } are zero.

4 Main results

Let us now return to our main goal, namely, obtaining uppemas on the moment
vanishing indexs (D, p) .
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Definition 4. Given® of the form [2), denote for each=0,...,n

def ;
aj = dj -,

and also

Proposition 4.Let f € 222 (D, p). Then vanishing of the firgp+2)n+ o (D)
moments of f (i.e. = --- = Mp 204 q—1 = 0) implies identical vanishing of the
sequencé ey} defined by Theorel 1.

Proof. Consider the recurrence relatidn (6). Denote its left-hgidd by . Obvi-
ously, since eacly is a linear combination of the moments, we have

Ho= "= Hn(ps2)-1=0.
Consequently, the corresponding right-hand sides alsisivaire.

€= =&n(ps2)-1=0. (12)
The conclusion follows immediately from Corolldry 1. a0
Now we establish our main result.
Theorem 2.Let f € 22 (D, p), f # 0 with discontinuity points

a=¢§ <& < <&p<épa=b.
Assume that p(&j) # O for at least onej as above. Then at most
(p+2)n+a(®)-1

first moments of f can vanish (i.egm --- = M, 2)n1q—2=0).

Proof. Assume by contradiction that the firgb+ 2)n+ a moments off vanish,
ie.

Mo ="+ =Mypi2)4q-1=0
By Propositio ## and Corollafy 2 we immediately conclude tha

c,j=0 j=0,...,p+1,¢=0,....,n-1,

Where{cm} are described by Propositibh 2. Now we take the congréte which
pn (&j) # 0. This means that the operafris regular a&;, and consequently each
solution to® f = 0 in the neighborhood aof; is uniquely determined by the initial
valuesf (§),..., f(""1(&;). We claim that
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_ - -1 -1 (g-
(g) (&) =1 (&) -r(g)==1"2(g) -1V (g) =0
(13)
In this case, we would immediately conclude that the fumcfids analytic até;
(being a solution of analytic ODE), contradicting the asption thaté; is a point

of discontinuity off.

To prove[IB), we proceed as follows. By Proposifibn 2 it isyeta see that the term
Cn1j (K, 1 & is in fact equal to

{f (Ej+) - (Eji) } (K)n—1Pn (&)

in the expression fogy. Sincepn (€j) # 0, we conclude that (Ej+) —f (Ej*) =0.
Substituting this into[{}9), we see that the next texm, j (K),,_» Ejk*”” equals

{7(&7) =1 (&)} Wn28 " 2on @),

and thusf’ ( &) — f'(&;” ) = 0. Proceeding in this manner, we arrive[adl (13). This
finishes the proof of Theoren 2. 0

As a first consequence, we have the real-valued version afethdt by Kisunko

[12).

Corollary 3. For every nd > 0 and p> 0 consider the family

Fih 4= {f cePP(D,p): D= %pj (X)01, a (D) =d, pn(x) #0on [a,b]}.
=

Then
o (Fyha) <(P+2)n+d-1

Since the leading coefficiemd, (X) cannot vanish at more than dagpoints, we
also have the following result.

Corollary 4. For every nd > 0 and p= 0 consider the family

n .
yrﬁf{dz{fegz@(@,p): sz)p,-(x)al, a(@):d,degpn<p+2}.
=

Then
o (Z5a) <(P+2)n+d-1

Let us now try to establish what happens in the general casd. £ 22 (D, p),
f £ 0. Consider two possibilities.
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1. The sequencée} does not vanish identically. In this case, at least somesof it
initial terms{so, . .,en(p+2),1} must be nonzero (Corollafy 1). But this imme-
diately implies that some of the fira{ p+ 2) + o — 1 moments must be nonzero
as well (otherwise the equalityl(6) cannot hold).

2. The sequencggy} vanishes identically, but Theordrh 2 is not applicable. Is th
case the recurrence relatidm (6) becomes homogeneouswhiteriein the form

Z q/ rn(+/ k:Oala"'a (14)
(=—n
where |
def i .
q (k) = ZO(—l)Jam,j (k+E+]);- (15)
J:

The leading coefficiei, (k) may have positive integer zeros. L&{®D) denote
the largest such zero. Then we claim that no more than\ (9) moments can
vanish. Indeed, starting witk= A (©) + 1 we can safely divide the recurrence

(@I4) byqgq (k) and obtain

a—1
Mea= Y M(KMar, kZA(D)+1,

l=—n

wherer, (k) are some rational functions with non-vanishing denomirsafthere-
fore if the firstA (D) + o + 1 moments are zero, then all the rest of the moments
must vanish, implying vanishing dfitself.

Thus we have proved the following result.
Theorem 3.For every®, p we have

og(@,p)<max{n(p+2)—LAD)}+a(D).

In Sectiori 6, we demonstrate that in the case of Fuchsiaerdiffial operators, the
numberA (D) has a well-known interpretation.

5 Moment generating function

In this section we provide an alternative proof for the resiilKisunko [12] con-
cerning moment generating functions.

Proposition 5. Let f € & %. The formal power series

def % T
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is in fact the Laurent series of the Cauchy type integral

/b f(t)dt

a Z—t

Proof. Write ;% = 2 (l—}r) and expand into geometric series. Convergence fol-
z

lows immediately forz — co. a

The generalized power sums (Sectidn 3) also have a well-knipterpretation as
the Taylor coefficients of rational functions. The followifact is well-known, and
so we omit the proof.

Proposition 6. Let the sequencesc} be of the form(TT). Then the formal generat-

ing function
e %
2= ——
2 71

is a regular at infinity rational function, with polefo, ..., &p 1}, each with multi-
plicity at most n. In particular,

Theorem 4.Let f € 2% (D, p). Then the Cauchy integraj katisfies in the neigh-
borhood ofe the inhomogeneous ODE

©|f (Z) = Rf (Z) s (17)

where R (2) is the rational function whose Taylor coefficients at infirate given
by the sequencs as in(Z). Consequently, Rz) is given by the explicit expression
(I8), with & ; replaced by ¢; from (@) (Propositior2).

Proof. Consider the asymptotic expansion of the functidhy at infinity

[ee]

S

By substituting as in [2) ands = 5o z We get

n 4 o (K1),

Dl = ji)pj (Z) Z)% % Zk+1+] i ai-,J
(ke j—imst) = ti% %(—1)jai,j (1) mepi
= =

_;%
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Comparing powers af we have that = px wherepy denote the left-hand side of
(®). Frompy = & the conclusion follows. a

6 Fuchsian operators

In this section we employ notions from the classical Fuahgi@ory of linear ODEs
in the complex domain (we used the referemceé [10]).

Assume that the sequengg } vanishes identically. In this case, the Cauchy integral
I+ satisfies in the neighborhood ®fthehomogeneous ODE

Dlf =0.

Definition 5. The operator® is said to belong to the class if it has at most a
regular singularity ato.

Lemma 2. Let® € fR. Then
1. The numbers; (see Definitiof 4) satisfy
an=>0aj, j=0,...,n-1 (18)
2. The characteristic exponents®fat the pointw are the roots of the equation
oy (5—1) =0,
where q (k) is defined by{I5).

Proof. Dividing the coefficients o® by p,, we get the operator

" +r1(20" T+ 1 (2], ”(Z)—pgj(i)z)-

A necessary and sufficient condition for the point at infindype at most a regular
singularity of this operator is that the functiop(z) is analytic ato and has a zero
there of order at leagt([10, Theorem 9.8b]). That is,

degpn — degpn-j > |.
But this is equivalent to

degpn—n
an

degpn-j—(n— )

=
= On-j.
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To prove the second statement, substitute the formal Fiebearies at infinity

[

%
g(Z)—kZOZW

into ®g = 0. By complete analogy with the calculation in Theofem 4 wethge
recurrence relation

n dj

2020(—1)151‘-,,- (t+s+i—1)bij=0, t=01...
]=0i=

Fort = 0 we find the highest order coefficient in this recurrence teegeal to
(i—j=a=an)
n .
ZO(—l)J (s+a+j—1);8j+a,j=0a(s—1).
=
The proofis finished. a0
Together with Theorei 3, this immediately implies the fafilog bound.

Corollary 5. Let® € R, and letA (D) denote its largest positive integer character-
istic exponent at the poimé. Then/ (D) = A (D) — 1, and consequently

o(@,p) <max{(p+2)nNA (D)} +dr—n—1.

Now let us return to Examplé 1. The following fact is well-kmo (e.g. [10, Section
9.10].

Proposition 7. The Legendre differential operat@, is of Fuchsian type with sin-
gularities—1,1, . The characteristic exponentsatare m+ 1 and —m.

Theoreni R is clearly not applicable. Using the form{ila (75 easy to see that
Po (1.X) (1) =Po (f.4) (-2) =0

for any f € 229, and therefore the sequengg} in this case is identically zero.
Consequently, we conclude that

g (@m,o) - m,

as expected.
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