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Abstract. In this paper we consider several nonlinear systems of algebraic equations which can
be called “Prony-type.” These systems arise in various reconstruction problems in several branches
of theoretical and applied mathematics, such as frequency estimation and nonlinear Fourier inver-
sion. Consequently, the question of stability of solution with respect to errors in the right-hand
side becomes critical for the success of any particular application. We investigate the question of
“maximal possible accuracy” of solving Prony-type systems, putting stress on the “local” behavior
which approximates situations with low absolute measurement error. The accuracy estimates are
formulated in very simple geometric terms, shedding some light on the structure of the problem. Nu-
merical tests suggest that “global” solution techniques such as Prony’s algorithm and the ESPRIT
method are suboptimal when compared to this theoretical “best local” behavior.
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1. Introduction.

1.1. Problem definition. Consider the following system of algebraic equations:

K
(11) Zaigf :mkh
=1

where a;,&; € C are unknown parameters and the measurements {mk}k:O’L___ are
given. This “exponential fitting” system, or “Prony system,” appears in several
branches of theoretical and applied mathematics, such as frequency estimation, Padé
approximation, array processing, statistics, interpolation, quadrature, radar signal
detection, and error correction codes. The literature on this subject is huge (for in-
stance, the bibliography on Prony’s method from [3] is some 50+ pages long). Our
interest in this system (and other, more general, systems of this kind, to be specified
below) is motivated by its central role in algebraic sampling—a recent approach to
reconstruction of nonlinear parametric models from measurements. There, it arises
as the problem of reconstructing a signal modeled by a linear combination of Dirac
d-distributions,

K
(12) f([l)) = Z ald(ﬂi — fz), ai,fi € R,
=1
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from the measurements given by the power moments

(1.3) i) [ ot @)z,

While the above problem may be considered mainly of theoretical interest, it is
actually one of the most basic problems in algebraic sampling. On one hand, if s(x) is
a piecewise-constant signal with jump discontinuities at the locations &1, ..., &k, then
s'(z) = f(x) as in (1.2). Thus, the “signal” f(x) essentially captures the nonsmooth
nature of s(z). On the other hand, the moments (1.3) are convenient to consider
because of the respective simplicity of the arising algebraic equations, while other
types of measurements (e.g., Fourier coefficients) may be recast into moments after a
change of variables.

An important generalization of the Prony system, which is of great interest to
us, arises when the simple model (1.2) is extended to include higher-order derivatives
(see [8, 46] for examples of such constructions):

K lLi—
(1.4) Z

1
8Dz - &), ai;,& ER,
7=0

where §() is the jth derivative of the Dirac delta (in the sense of distributions).

def
From now on, we denote the number of unknown coefﬁments a;j by C = EZ 11

and the overall number of unknown parameters by R Lotk Taking moments of
f(z) in (1.4), we arrive! at the following “confluent Prony” system:

—

l;

K
(1.5) ZZ T =my, aij, &ismu € C,
i=1 j=0

where the Pochhammer symbol (i); denotes the falling factorial
(i) =i —1)-...-(i—7+1), teR, jeN,

577 is defined to be zero for k > j.

The Prony-type systems appear in various recent reconstruction methods of sig-
nals with discontinuities; see [7, 8, 9, 10, 11, 14, 18, 20, 21, 23, 24, 28, 30, 32]. In
particular, finite rate of innovation (FRI) techniques [19, 31, 46] have spawned a
rather extensive literature (see, e.g., a recent addition [44]). Usually, the & represent
“location” parameters of the problem, such as discontinuity locations or complex fre-
quencies §; = e*“7. These variables enter the equations in a nonlinear way, and we call
them “nodes.” The coefficients a;;, on the other hand, enter the equations linearly,
and we call them “magnitudes.”

While algebraic sampling provides exact reconstruction for noise-free data in many
cases mentioned above, a critical issue remains, namely, stability, or accuracy of so-
lution. Stable solution of Prony-type systems is generally considered to be a difficult
problem, and in recent years many algorithms have been devised for this task (e.g.,
[6, 25, 26, 33, 34, 36, 38, 42, 45]). Perhaps the simplest version of the stability problem
can be formulated as follows (cf. Definitions 3.1 and 4.1 and subsection 1.4).

and the expression (k)jf{“

LStrictly speaking, this will result in a “real” confluent Prony system.
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Assume that the measurements {mk}kzo _g_q are known with some error: my +

ex. Given an estimate € = maxy |eg|, how large can the error in the reconstructed

model parameters (i.e., |AE; = |§~j—§j| and |Aa; ;| aef |a; ;—a; ;|) be in the worst case

in terms of €, the number of measurements S, and the true parameters {£;},{a; ;}?
In more detail, our ultimate goal may be described as follows:
1. determine the qualitative dependence of the accuracy on the values of the
parameters;
2. quantify this dependence as precisely as possible; and
3. determine how (and if at all) increasing the number of measurements (i.e.,
oversampling) improves accuracy.

1.2. Related work. Matching the ubiquity of Prony-type systems is the impres-
sive body of literature devoted to both designing methods of solution and analyzing
the accuracy/robustness of these methods; see references cited above. Although there
appears to be no simple answer to the above question of “maximal possible accuracy,”
several important results in this direction are available in the literature, which we now
briefly discuss.

Methods of solution can be roughly divided into three categories (see, e.g., [41],
[43, section 4]): direct nonlinear minimization (nonlinear least squares), recurrence-
based methods (such as the original Prony method; see section 2), and subspace
methods (such as Pisarenko’s method, MUSIC, ESPRIT, and matrix pencils; see,
e.g., [38]).

In the framework of statistical signal estimation [27], the subspace methods are
known to be more efficient and robust to noise, mainly due to the fact that the noise
is assumed to have certain statistical properties. The confluent Prony system (1.5)
is also known as the “polynomial amplitude complex exponential” (PACE) model. A
standard measure of estimator performance is Cramer—Rao bound and related lower
bounds (CRB). These have been recently established for the PACE model in [5] (see
also related results for FRI models [15]). Furthermore, it has been demonstrated that
the performance of the generalized ESPRIT algorithm ([4, 6] and subsection 5.2) is
close to the optimal CRB; therefore, we consider it to represent the state of the art
in the subspace methods.

We do not assume any particular statistical model or other structure for either
the error terms e, or the estimation algorithm (such as white noise or unbiasedness).
Therefore, the CRB and related lower bounds cannot provide the full answer to the
stability problem as is. Still, it turns out that the stability bounds developed in this
paper resemble the CRB as established in [5]; see subsection 5.1 below for details.

Recent papers of Tasche, Peter, and Potts [34, 36] contain some uniform error
bounds for solving Prony systems. In particular, the authors develop the so-called
approximate Prony method, analyze its worst-case error, and numerically compare
it with the ESPRIT method (showing similar performance). Although they consider
the nonconfluent version of the Prony system (1.1) and analyze only the error in
recovering the magnitudes a;, we believe these results to be an important step toward
answering the stability problem as posed above. See subsection 5.3 below for details.

Very recently, Candes and Fernandez-Granda [18] investigated stable solution of
Prony systems by total variation minimization under assumptions of minimal node
separation, in the context of superresolution.

Considering all of the above, we believe that a full answer to our somewhat
rigid {°° formulation of the stability problem may contribute to the understanding of
limitations of using Prony systems and methods both in signal processing applications
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and in function approximation, in particular compressed sensing, nonlinear Fourier
inversion, FRI techniques, and related problems.

1.3. Notation. In what follows we use the infinity norm distance

Ve, y e C": dist (x, y) 4 max |x; — vl
1<i<n

and denote by B (a,¢) the e-ball around a point @ € C™ in this norm.

1.4. Summary of results. In section 3 we define “best possible pointwise ac-
curacy” as follows. We consider the “Prony map” Ps : C® — C% which associates to
any parameter vector © = {{a;;},{&}} € C its corresponding measurement vector
y = (mo,...,ms_1) € C% (where the my, are given by (1.5)).

Now if instead of y we are given a noisy ¢ € B (y,¢), then this ¢ can correspond
to any parameter vector & € C* for which Ps (Z) € B (¥, ). Therefore, we define the
best possible accuracy at a point x to be equal to the maximal (over all §) spread of
the preimage of this B (g, ), that is (see Definition 3.1),

sup 1diam P (B(9,¢)).
YyeB(y,¢)

We then simplify the setting by assuming that the number of measurements S
equals the number of unknowns R, and looking at the (local) linear approximation
to the Prony map Ps. Then the solution error at some (noncritical) point in the
parameter space can be estimated by the local Lipschitz constant of the (regular)
inverse map Pg !, We derive such simple estimates in section 4 and compare them
to the “global” accuracy of the original Prony method (derived for completeness in
section 2).

Our main result (Theorem 4.5) can be summarized as follows (all statements are
valid for small €):

1. The stability of recovering a node &; depends on the separation of the nodes, is
inversely proportional to the magnitude of the highest coefficient correspond-
ing to this node (Ja;;,—1|), and does not depend on any other magnitude.

2. For 1 < j <; —1, the stability of recovering a magnitude a; ; depends on the

lai,j—1]

separation of the nodes, is proportional to 1 + | and does not depend

@i, l;—1 ’
on any other magnitude. Note that in fact every malgnitude influences only
the next highest magnitude corresponding to the same node.

3. The stability of recovering the lowest magnitudes a; ¢ is the same for all nodes
and depends only on the separation of the nodes.

The separation of the nodes is specified in terms of norms of inverse confluent Van-

dermonde matrices on the nodes, which is roughly of the same order as some finite

power of H1§i<j§IC & — §i|71~
Our numerical experiments (section 6) confirm the above theoretical estimates.
We also test the performance of two well-known solution methods—mnamely, the
recurrence-based Prony method (section 2) and the generalized ESPRIT (subsection
5.2)—in the same setting as above (i.e., high SNR). The results suggest the following.
1. The recurrence-based global Prony method does not achieve the above theo-
retical limits, and so it is not optimal even in the case of small data pertur-
bations.
2. The subspace methods (in particular, the ESPRIT algorithm) behave better
than the Prony method, but they are still not optimal for small perturbations
and small sample size.
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The “Prony map” approach can in principle be generalized to obtain both global
accuracy bounds as well as to study effects of oversampling by considering the case
S > R and taking into account second-order terms in the Taylor expansion of Ps. We
discuss these directions in section 7.

2. The Prony method. In this section we describe the most basic solution
method for the system (1.5), which is in fact a slight generalization of the (historically
earliest) method due to Prony [37]. By factorizing the so-called data matriz, one
immediately obtains necessary and sufficient conditions for a unique solution as well
as an estimate of the numerical stability of the method.

Most of the results of section 2 are not new and are scattered throughout the
literature. Nevertheless, we believe that our presentation can be useful for further
study of the various singular situations, such as collision of two nodes.

2.1. The description of the method. The nontrivial part is the recovery
of the nodes ;. Note that the case of a priori known nodes has been extensively
treated in the literature (see, e.g., [1, 35] for the most recent results). Using the
framework of finite difference calculus, one can easily prove the following result (see
[8, Theorem 2.8]).

PROPOSITION 2.1. Let the sequence {my} be given by (1.5). Then this sequence
satisfies the recurrence relation (of length at most C' 4+ 1)

(ﬁ(E 60" ) ) 0.

i=1
where B is the forward shift operator in k and 1 is the identity operator.
COROLLARY 2.2. For all k € N we have the recurrence relation chzo qimr4; =0,

def

where qo, q1, - - .,qc are the coefficients of the polynomial q(x) = Hiil(a: — &)l
This suggests the following reconstruction procedure.?

Algorithm 1 The Prony method

Let there be given {my}7< " (where C = Ziil l;).
1. Solve the linear system (here we set gc = 1 for normalization)

mo mp - Mo-1 qo0 mc
mq mg mc q1 mc+1
(2.1) =—
mc-1 mc - M20c-2 qc-1 mac-1
défMC
for the unknown coefficients qg,...,qc—1.
2. Find all the roots of ¢(z) = 2% + Ef;ol giz®. These roots, with appropriate
multiplicities, are the unknowns &;,...,&c (use, e.g., arithmetic means to

estimate multiple roots which are scattered by the noise into clusters).

3. Substitute the recovered ¢;’s back into the original (1.5). Solve the resulting
overdetermined linear system (C' unknowns and 2C' equations) with respect
to the magnitudes {a; ;} by the least squares method.

2Equivalent derivation of the method is based on Padé approximation to the function I(z) =
>0 o myz"; see [37] and, for instance, [39)].
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Several comments are in order.

1. The number of measurements used in step 1 equals 2C', which can be greater
than the number of unknowns R = C' + K (equality for the order zero Prony
system). If more measurements are available, the linear system (2.1) can be
modified in a straightforward way to be overdetermined and subsequently
solved by, say, the least squares method.

2. The linear system for the magnitudes has a special “Vandermonde-like” struc-
ture (see below), and so certain efficient algorithms can be used to solve it
(e.g., [16, 29]).

The remainder of this section is organized as follows. The Hankel matrix M¢ is
shown to factor into the product of a generalized “Vandermonde-type” matrix which
depends only on the nodes ;, with an upper triangular matrix depending only on the
amplitudes a; ;. We also explicitly write down the linear system for the a; ; (see step
3 in Algorithm 1 above). These calculations lead to simple nondegeneracy conditions
and stability estimates for the Prony method.

2.2. Factorization of the data matrix. Let us start by recalling a well-known
type of matrix.

DEFINITION 2.3. For every j = 1,...,K and k € N let the symbol u;j denote
the following 1 x l; row vector:

def _ —1
(2.2) wie @[ e ke g ]

DEFINITION 2.4. Let U = U (1,14, ..., &k, k) denote the matriz

Uu1,0 u2,0 e UK,0
(2 3) U— Ui, u2;1 e uK,1
Uu,c-1 U2c-1 ... UKC-1

This matrix is called the “confluent Vandermonde” [16, 22] matrix. It has been
long known in numerical analysis due to its central role in Hermite polynomial inter-
polation. Its determinant is [40, p. 30]

K olu—1
(2.4) detU= [ -5 "] ]
1<i<j<K pu=1rv=1

It is straightforward to see that the matrix U defines the linear system for the
jump magnitudes a; ;.

PRroPOSITION 2.5. Let a be the column wvector containing all the magnitudes
{ai;}, ie.

def T
Q= [a1,0,-0501,01,—1,02,05- -, A2,05— 15 - - -, AK,0, O, 1 —1]
def T
and m = [mo,...,mc—1|". Then we have
(25) U(&lalla"')f’Cal/C)a =m.

It is known that every Hankel matrix H admits a factorization H = UDU”, where
U is given by (2.3) and D is a block diagonal matrix; see [17]. Using different notation,
such a factorization is proved in [4, Proposition III.7] for the Hankel matrix Mc.
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LEMMA 2.6. For the system (1.5), the matriz Mo admits the following factor-
1zation:
(2.6) Mc =UBUT,

where U = U (&1, 11, ..., &k, k) is the confluent Vandermonde matriz (2.3) and B is
the C x C block diagonal matriz B = diag{ B, ..., B} with each block of size l; X I;
given by

aio ai EE e @il;—1
l;—1
der | (li,g)az‘,li—l 0
(2.7) B X .. 0
(3ai-1 0 0
Qi l,—1 0 0

In other words, B; is a “flipped” upper triangular matriz whose jth antidiagonal equals
Qij - {1 (é) (jil) 1}

forj=0,...,l; — 1.

The formula (2.6) is useful because it separates the jump locations {&;} from the
magnitudes {a; ;}, simplifying the analysis considerably.

THEOREM 2.7. The system (1.5) for k = 0,1,...,2C has a unique solution if
and only if all the {&;}’s are pairwise different and all the {a;,—1}’s (just the highest
coefficients) are nonzero.

Proof. Existence of a unique solution to the system (2.1) is equivalent to the
nondegeneracy of Mc = UBUT. Furthermore, the system for the jump magnitudes
is given by (2.5). Therefore, existence of a unique solution to (1.5) is equivalent to the
conditions det U # 0 and det B # 0. The proof is completed by (2.4) and (2.7). O

2.3. Stability estimates. The stability of the Prony method can be estimated
by the condition numbers of the matrices B and U. In particular, we have the following
well-known result (e.g., [47]) from numerical linear algebra.

LEMMA 2.8. Consider the linear system Ax = b, and let xy be the exact solution.
Let this system be perturbed,

(A+ AA)x = b+ Ab,

and let xg + Ax denote the exact solution of this perturbed system. Denote dx =

||‘@:||“,6A = %,51) = %, and the condition number x = ||A|||A~Y| for some
|

vector norm || -

and the induced matriz norm. Then

K
. < ——m .
(2.8) b < T (54 + 3D)

Now we can easily estimate the stability of the Prony method (compare with
similar estimates in [4, eq. (19)]).

COROLLARY 2.9. Let the measurements {my} be given with an error bounded by
€. Denote u = k(U),b = k(B). Assume that |§;| < =2 for alli=1,...,K. Then the
Prony method recovers the parameters {£;, a; ;} with the following accuracy ase — 0:

88| ~ (ube) T +0 (1)),

Aa; | ~ C(E)u (u?be T +L.0.T,
|Aa;,;
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where C (Z) is a constant depending on the number =.

Proof. Using the factorization of Lemma 2.6, we obtain that x (M¢) < u?b.
Therefore, according to (2.8), the coefficient vector ¢ = (qo,-..,qc—1) is recovered
with the accuracy

R MC
l0g|| ~ m
u?be
1 —u?be
The parameters &1, ..., & are the roots of the polynomial with coefficient vector g,
with multiplicities 1, ...,lxc. Therefore, by the general theory of stability of polyno-

1
1.

. ((5Mc + 5m)

~ u?be + O(e?).

mial roots (see, e.g., [47]) it is known that A{; ~ (dq)'s. The first part of the claim
is thus proved.

Now consider the linear system (2.5) for recovering the jump magnitudes. Note
that the matrix U is known only approximately. Again, by (2.8) we have

K (U)

(2.9) b~ T TsT

(5U + 6m).

Assuming that |£;| < E, it is easy to see that 6U ~ C (E) (uzbs)#ﬂj. Plugging this
value into (2.9), we get the desired result. O

Inverses of confluent Vandermonde matrices and their condition numbers are ex-
tensively studied in numerical linear algebra (e.g., [12, 13, 22]).3 In general, x(U) will
grow exponentially with K and will also depend on the “node separation” [],,; [§; —
&)™ As for k(B), we are not aware of a general formula except for the simplest
cases.?

Finally, notice that the stability estimates of Corollary 2.9 suggest that when the
Prony method is used, the parameters of the problem are “coupled” to each other,

3In particular, the paper [22, Theorem 3] contains the following estimate for the norm of

{U (é1,1,...,€xc, 1)}~ when the nodes are arbitrary complex numbers:
c 2
- 1+¢;
U™ oo < (2 b I (\5‘ —|§fj"|) 7
1 A
where
1
b; def max(l + &L 1T+ 214 (&) Z —)
ot &5 — &l

4The following are estimates of the spectral condition numbers:
e For the standard Prony system we have
max; |a;
n(B) S — 5 | J»O|'
min; |aj ol
def aj o

e For multiplicity 1 confluent system, assuming a;j1 # 0 and denoting p; = P brute
3,

force calculation gives
2 2
K3 +2+p, K3 +4
2.9, /.2
K3 +2—pj K3 +4

2 . 2
P42+ u2+4
2 . 2

”’j+2 uj,/uj+4

ming
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in the sense that the accuracy of recovering either a node §; or a magnitude a; ;
will depend on the values of all the parameters at once. This undesired behavior is
confirmed by our numerical experiments in section 6.

3. Measurement set and the Prony map. Assume that the number of mea-
surements is S > R (where R is the overall number of parameters in the confluent
Prony system). Then we define Mg s to be the set® of all possible exact measure-
ments, i.e.,

K ;-1
def »
MR,S = (mo,ml,...,ms_l) : mk:ZZai,j(k)jﬁf J, Qi E(C, fj cC
i=1 j=0
c CS.

This Mg s is the image of CF under the “Prony map” Ps : C¥ — C5 defined as

=

(3.1) Ps ({aij}, {&}) = (mo,ma, ... ,ms_1) = mp =

K li—
i=1

ai,; (k)€ 7.
0

Jj=

Now let © = {{a;;},{&}} € CF be an unknown parameter vector and y =
Ps (x) € Mpg its corresponding exact measurement vector. The absolute error in
each measurement is bounded from above by ¢; therefore, the actual measurement
satisfies § € B (y,¢). Now consider the set

def ~
Tye = MprsNB(y,e)

of all possible noise-free measurements corresponding to the given noisy one y. Any
algorithm which receives this g as input will therefore produce worst-case error, which
is at least

1
5 diamPS_1 (Ty,e)

where Pg ! denotes the full preimage set.

This prompts us to make the following definition.

DEFINITION 3.1. Assign to each one of the parameters {a;;},{&} a unique index
1 < p < R. The best possible pointwise accuracy of solving the noisy confluent
Prony system (1.5) with each noise component bounded above by € at the point x =
({aij},{&}) € C! with respect to the parameter p is defined to be

e L. _ _
ACC (z,e,p) i/ sup ~ diam, Pg' (Mp,sN B (9,¢)),
YEB(Ps(x).¢)

where diamy, A is the diameter of the set A along the dimension p.

Obviously, ACC (x, ) will depend on the point & € C¥ in a nontrivial way because
the chart Pg is nonlinear. Calculation of the function ACC may be considered as one
possible answer to the stability problem posed in the introduction.

5Formally, MR, s is a projection of the complex algebraic variety defined by the set of the S
confluent Prony equations onto the corresponding S coordinate axes. If all parameters are real-
valued, this is a semialgebraic set.
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4. Local accuracy. Having given the general definition of accuracy, in the re-
mainder of this paper we restrict ourselves to the “local” setting in the following sense:
we assume that € is small enough so that the set Mg g can be approximated by the
linear part of the Prony map, and furthermore we take S = R so that the preimage
will be given by the usual inverse function. For such an analysis to be valid, it should
be done at noncritical points of Pg so that this map is locally invertible. By definition,
the point x is a critical point of Pg if the Jacobian determinant of Pg vanishes at x.

To summarize, let us give the following definition of the local accuracy which
is nothing more than the first-order Taylor approximation to the inverse function
N = 77§1 at a regular point of Pg.

DEFINITION 4.1. Assume S = R. Let © = ({a;;},{&}) € CE be a regular point
of Ps, and assume € to be small enough so that that the inverse function N = 775_1
exists in the e-neighborhood of y = Ps(x). Assign, as before, to each one of the
parameters {a;;},{&} a unique index 1 < p < R. The best possible local pointwise
accuracy of solving the noisy confluent Prony system (1.5) with each noise component
bounded above by £ at the point x with respect to the parameter p is

ACCroc (x,e,0) E  sup |[Tn(y) @ —v)],

YEB(y.¢)

where Jx (y) is the Jacobian of N at the point y and [v]
the vector v.

In Theorem 4.5 below we estimate the function ACCroc. The key technical tool
is the following factorization of the Jacobian of Pg, which separates the nonlinear part
depending on the nodes {;} from the linear part, which depends on the magnitudes
{ai;}.

LeEMMA 4.2. Let ¢ = ({ai;}, {&}) € CE. Then

p 18 the pth component of

(41) j’ps(ﬁc) = U(é.lvll + 13 e 7§K71’C =+ 1) ' dia’g{Dla . '7D’C}a

where U(. .. ) is the confluent Vandermonde matriz (2.3), and D; is the (I;+1) x (I;+1)
block

1 00 0
e 01 0 ;.0
(4.2) DY . .
0 00 @i, —1
Proof. We have by (3.1)
omy, k—j
= k ) J
aaij ( )Jé-z ’
om Li—1
k k +1 k
8—& Z ai;(k (G+1) _ Za” L J
The rest of the proof is just a straightforward calculation. 0

COROLLARY 4.3. = = ({ai;},{&}) € CE is a critical point of Ps if and only if
at least one of the following conditions is satisfied:
1. & =& for any pair of indices i # j.
2. aj,—1 =0 forany 1 <i<K.
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COROLLARY 4.4. Let x € C® be a regular point of Ps. Then the Jacobian matriz
of the inverse function N' = Pg' at y = Ps(x) is equal to

TIn(y) = (T (@)} = (a0, -,a1,0,-1,81, -, 0K,0,- - K, 1 —1,EK)

8(77’1;0, e '7mR—l)
=diag{D;",..., D'} U N&,l+ 1, &, e + 1),

where

(43) D._l _ | . | | —L

i1, —1

Now we are ready to formulate and prove our local stability result.

THEOREM 4.5. Assume S = R. Let x = ({ai;},{&}) € C" be a regular point
of Ps, and assume € to be small enough so that that the inverse function N' = 775_1
exists in the e-neighborhood of y = Pg ().

Then there exists a positive constant C depending only on &y, ..., &c andly, ... g
such that for alli=1,....K

ClE, .7:07
Cls(l—i—'Ia” ) 1<j<l—1,
1

|a’i7li—1|'

ACCLOC (w, g, aij) =

ACCroc (x,¢,&) = Cie

Proof. Express the Jacobian matrix Jy(y) as

_ [T T T T T 7T
In(y) = [310 e Sy s spe e Sk le—1 t/d )
where
def [ Bayy da;; da;;
Sij = |dme Tmi Oms_1|’
t; d_ef 3 9¢; 3
Omg om Tt Oms_1 |
Let y = (mo + Amg,...,ms—1 + Amg_1), where each |[Amy| < . Denote by | - ||1

the Iy vector norm; i.e., if v = (v;) is an n-vector, then ||v||; def >or, |vi]. Then

50@] Amk

[Iv W) (¥ = y)l,,,

<ellsijl1,

Z (9& Amk

k=

[In (y) (¥ < el

By Corollary 4.4, the matrix Jys is the product of the block diagonal matrix D* def
diag{D7*,..., D,El} with the matrix U* % (U(&,1+1, ..., &, lic+1)) 7L, Therefore,
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sij and t; are the products of the corresponding rows of D; ! with U*. Let D; ! =
(d,(;)l) and U* = (ug,;). Then

P ;41 ) l;+1 ) P
Isisl = "1 d 0w < SIS Jurl,
k=1"1=1 =1 k=1

and likewise

1;+1

P
il < 1A S Ju-
=1 k=1

Let || - |loo denote the “maximal row sum” matrix norm; i.e., for any n x n matrix
def
C = (cij) we have |C|ls = max;—1,._, > i leigl.
Denote C; % lU*|loo- Then substitute for dl(lll the actual entries of D; ! from

(4.3) into the above, and get the desired result. a
5. Comparison with known results.

5.1. CRB for PACE model. The confluent Prony system (1.5) is equivalent
to the PACE model [4, 5]. The Cramer—Rao bound (CRB) (which gives a lower bound
for the variance of any unbiased estimator) of the PACE model in colored Gaussian
noise is as follows (note that the original expressions have been appropriately modified
to match the notation of this paper).

THEOREM 5.1 (see [5, Proposition I11.1]). Let the noise variance be o?; thenS

0,2

& a1

CRB {am} = 6'30'27

CRBA{&} = Cy

2
a a
ORB{ai)j}:O40'2 <O5 Ll +069%{L1}+1>, j:1,2,...,li—1,
Qi l;—1 il —1
where Cy, ..., Cq are constants depending on the configuration of the nodes {&;}, while

in addition Cy,Cs5,Cs depend on the index j.
As mentioned in subsection 1.2, there exist several essential differences between
our setting and the statistical signal estimation framework; in particular,
1. no a priori statistical model of the noise is available;
2. no assumptions on the reconstruction algorithm (estimator) such as unbiased-
ness are made; and
3. the measure of performance is the worst-case error rather than estimator
variance.
The expressions for the CRB in Theorem 5.1 are very similar to the local pointwise
accuracy bounds of Theorem 4.5. The reason for such similarity is not a priori clear
(although it could be partially attributed to the fact that both methods require calcu-
lation of the partial derivatives of the measurements with respect to the parameters),
and it certainly warrants further investigation.

6Here 9 (+) denotes the real part.
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5.2. ESPRIT method. The ESPRIT algorithm is one of the best performing
subspace methods for estimating parameters of the Prony systems with white Gauss-
ian noise. Originally developed in the context of frequency estimation [43, section
4.7], it has been generalized to the full PACE model [4], and its performance has
been shown to approach the CRB in the case of high signal-to-noise ratio (SNR) and
infinite observation length.

In essence, the ESPRIT (and other subspace methods) relies on the following
observations:

1. The range (column space) of both the data matrix M¢ (2.1) and the confluent
Vandermonde matrix U (2.3) are the same (follows directly from (2.6)).
2. The matrix U has the so-called rotational invariance property [4]:

ut=u,J,

where UT denotes U without the first row, U denotes U without the last
row, and J is a block diagonal matrix whose ith block is the [; x I; Jordan
block with the number &; on the diagonal.

Suppose we know U; then the matrix J could be found by

J=Ujrut

(where # denotes the Moore-Penrose pseudoinverse), and then the nodes &; could be
recovered as the eigenvalues of J.

Unfortunately, U is unknown in advance, but suppose we had at our disposal a
matrix W whose column space was identical to that of U. In that case, we would
have W = UG for an invertible G, and consequently

wh=w,o,
where

=G G,
which means that the eigenvalues of ® are also {&;}. Such a matrix W can be ob-
tained, for example, from the singular value decomposition (SVD) of the data matrix/

covariance matrix. To summarize, the ESPRIT method for estimating {;}, as used
in our experiments below, is as follows.

Algorithm 2 ESPRIT method for recovering the nodes {¢;}.

Let Mg be a rectangular n x | Hankel matrix built from the measurements.
1. Compute the SVD Mg = WXV7T,
2. Calculate & = WfWT.
3. Set {&} to be the eigenvalues of ® with appropriate multiplicities (use, e.g.,
arithmetic means to estimate multiple nodes which are scattered by the noise).

Note that the dimensions n,! are not fixed a priori, but in [6] it is shown that
taking n = 2[ or [ = 2n results in optimal performance for nonconfluent Prony system
(1.1).

Since the performance of the ESPRIT method is close to the CRB, which, in turn,
resembles our local bounds, we regard the ESPRIT as the best candidate among the
“global” solution methods of the confluent Prony system. It should be noted, however,
that the analysis of ESPRIT as presented in [6] suggests a relatively complicated
dependence of the estimator performance on the model parameters for a small number
of measurements S.
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5.3. Approximate Prony method. In [36] the authors develop the approxi-
mate Prony method for solving the system (1.1) (restricting £; to unit length) and
analyze its performance for small measurement errors. In more detail, the model is
defined as

M
h(a:)chjeszz, z€R, ¢; €C, fj € (—mm).
j=1

The measurements are given with errors
h(k)=h(k)+e,, k=0,...,2N,

where the number of measurements N satisfies N > 2M + 1. Finally, the coefficients
c; are assumed to be large with respect to the noise level, i.e.,

|€k| <1 K |Cj|.

The proposed solution method is as follows.

Algorithm 3 Approximate Prony method.

1. Build the Hankel matrix H € C2N~%L from the measurements where L is
an upper bound on the number of nodes. Compute the SVD of H, and
take the smallest nonzero singular value and its singular vector v = (v;).
Finally, compute the roots of the polynomial p (z) = ZiL:O v 2t
the approximations of {f;}.

2. Find {¢;} by solving an overdetermined Vandermonde linear system.

These are

The stability analysis of the approximate Prony method is performed only for step
2 above, assuming that the frequencies { f;} have been recovered with high accuracy.
Potts and Tasche [36, Theorem 5.2] give the following estimate:

(5.1) le; — &1 N\/NM‘fj —E‘mgx|hk|+m?X|Ahk|.

While missing the explicit analysis of step 1 above (however, the actual numerical
accuracy of this step was shown in [34] to be comparable to the performance of the
ESPRIT method) and dealing with single poles only, these results may provide an
important insight as to the dependence of the accuracy on the number of measure-
ments N, as well as to the applicability of the Vandermonde inversion for recovering
the magnitudes (the errors in fact increase with N!). In addition, the authors notice
that the accurate recovery of the magnitudes depends greatly on a sufficient accuracy
of recovering the nodes, and this fact is also reflected in our numerical experiments
(section 6).

6. Numerical experiments. In our numerical experiments we had two distinct
goals:
1. Numerically investigate the “best possible local accuracy” of inverting (1.5)
as a function of the various parameters of the problem, and compare the
results with the predictions of Theorem 4.5.
2. Ascertain whether there exist some regular patterns in the behavior of the
global solution methods (Prony and ESPRIT) in a similar “local” setting,
and compare their performance to the optimal one.
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6.1. Experimental setup.
1. Given K, d, choose the jumps &1, ...,¢k € [0, 1] and the magnitudes a; g, ...
aK,d—1 € [—1, 1].
2. Change one or more of the parameters according to a particular experiment.
3. Calculate the perturbed moments my = my + £, where my, is given by (1.5)
and € < 1 (on the order of 10710) are randomly chosen.
4. Invert (1.5) with the right-hand side given by my, by one of the following three
methods:
(a) Nonlinear least squares minimization (using MATLAB 1sqnonlin rou-
tine) with the initial guess being very close to the true parameter values.
This is our simulation of the “local” setting.
(b) Global Prony method—Algorithm 1.
(¢) ESPRIT method—Algorithm 2.
5. Calculate the absolute errors |A&;| = |&; — é}\ and |Aa; ;| = |a;; — @ |-
In all the experiments we took K = 2. All solution methods were applied to the same
moment sequence {my}. The number of measurements is the minimal necessary for
exact inversion, namely, R for least squares and 2C' both for Prony and ESPRIT.

6.2. Results.

3

6.2.1. Changing the highest coefficient. In the first set of experiments, we
checked how the reconstruction errors |A¢;|,|Aa; ;| depend on the magnitude of the
highest coefficient |a;;,—1|. The results are presented in Figure 6.1(a)—(c).

For both least squares and ESPRIT (but not for Prony), the inverse proportion-
ality |A&;| ~ \az—1_1| is seen in Figure 6.1(a), (c), matching the theoretical predictions
of Theorem 4.5.

For LS and ESPRIT, the errors |Aa; ;| seem to be unaffected by the increase in

|a;i,;,—1]. This can be explained very well by the formula [Aa; ;| ~ 1+ IZ#”" so that
i —1

indeed |Aaq; ;| should remain close to constant as |a;;,—1| — co.

The Prony method’s performance with respect to the recovery of the magnitudes
actually degrades with the increase in |a;;,—1|. Although both Prony and ESPRIT use
the same method for the recovery of the magnitudes, it appears that the initial error
in recovering the nodes, which is significantly smaller in ESPRIT (see subsection 6.2.3
below), influences this step greatly—in accordance with the predictions of [36, 34] (see
also the discussion in subsection 5.3).

In addition, the Prony method fails to separate recovery of a node and its mag-
nitudes (say, A&, Aay ;) from the highest magnitude associated with another node
(e.g., laz,1,—1]); these results are not shown for the purpose of saving space.

6.2.2. Changing coefficient other than the highest. In the second set of
experiments, we changed the magnitude of some coefficient other than the highest,
ie., a;; for j <l; — 1. The results are presented in Figure 6.1(d)—(f).

For the least squares method, the dependence of |Aa; ;| on the “previous” mag-
lai -1l .
ai,zj,i—1| ’
behavior should be visible when |a; j_1| > |a;,—1], as can indeed be noticed in Figure
6.1(d). In addition, the other magnitudes and the jumps are unaffected, as predicted.

On the contrary, neither Prony nor ESPRIT succeeds in confining the influence
of |a; j—1| only to the recovery of the next magnitude |Aa; ;|. In particular, |[A¢|
increases with |a1 | in both of them. The error in all the magnitudes grows with
la1 0], as opposed to the least squares, where only |Aaj 1| is increased.

nitude |a; ;1| for j # 0 is consistent with the formula |Aa; ;| ~ 1+ such
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Accuracy of solving confluent Prony system Accuracy of solving confluent Prony system
Degree=2, K=2, log [¢|=~10.000000 Degree=2, K=2, log [¢|=-10.000000
method=Least squares method=Prony

10 T T T
107 £
10° b
10° b
107
107"
1077
107 1
1wl
10l
0" .
107 3 ? 10° 10"
la, la,
(a) Least squares (b) Prony
Accuracy of solving confluent Prony system Accuracy of solving confluent Prony system
Degree=2, K=2, log |¢|=-10.000000 Degree=1, K=2, log |¢|=—10.000000
method=ESPRIT method=Least squares
o -
10 T T T T T T T 10 T T T T T T T

10
(¢) ESPRIT (d) Least squares. Note the growth of |Aay,1].
Accuracy of solving confluent Prony system Accuracy of solving confluent Prony system
Degree=1, K=2, log |¢|=-10.000000 Degree=1, K=2, log |¢|=—10.000000
2 method=Prony 2 method=ESPRIT

10 T T T T T T T 10 T T T T T T T

10° b
10° b
107 - 1
10° - 1
10° b

N ~ - / - ~
—a—ag| Mg\ N NN s ", —a—ag | i N AW N N N N
10l - - —lagyl ) N 4 10l - - -lag) g [\ ‘\ Vo \// (AR 4
\ VA
—o- laayl o laag o v )
la aUI la aUI
1072 I . . . . 1 . 1072 I . . . . 1 .
107! 10° 10' 10° 10° 10 10° 10° 10’ 10" 10° 10' 10° 10° 10 10° 10° 10"
la, o la, o
(e) Prony (f) ESPRIT

Fic. 6.1. (a)—(c): Dependence of the reconstruction error on the magnitude of the highest
coefficient; degree = 2. (d)—(f): Dependence of the reconstruction error on the magnitude of the
“previous” coefficient; degree = 1.
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(a) Least squares (b) Prony (c) ESPRIT

F1G. 6.2. Reconstruction error as € — 0, degree = 2.

‘Accuracy of sohing conflusrt Prony system

method_ESPRIT

(a) Least squares (b) Prony (c) ESPRIT

F1G. 6.3. Dependence of the reconstruction error on the order of the model.

6.2.3. Dependence on the measurement error. In the next experiment, we
kept all the parameters constant and changed the magnitude of the error maxy, ey.
The results are presented in Figure 6.2. The ESPRIT performs slightly better than
Prony, but both of them are worse than the optimal least squares. Note, however,
that the asymptotic error (the slope) is O (¢) in spite of the fact that both algorithms
involve extraction of multiple roots, which should decrease the accuracy to O (55),
where d is the order of the pole. This phenomenon can be explained by the effect of
averaging the clustered roots (see [4, Proposition V.3]).

6.2.4. Dependence on the model order. Next, we checked the dependence

of the reconstruction error on the model order D def max;—=1 .. xl;. The results are
presented in Figure 6.3. The reconstruction error for all the parameters grows expo-
nentially in D for all the methods.

6.2.5. Dependence on the node separation. Finally, we checked the depen-
dence of the reconstruction error on the distance between the two nodes |£3 — &1].
The results are presented in Figure 6.4. For all the three methods, the results are
consistent with

A&, |Aai | ~ & — &l .

6.3. Conclusions. In the numerical experiments we have investigated the “best
possible local accuracy” via the least squares method, comparing it both with the
theoretical results of Theorem 4.5 and with the performance of two “global” solution
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(a) Least squares (b) Prony (c) ESPRIT

F1G. 6.4. Dependence of the reconstruction error on the node separation.

techniques, namely, Prony and ESPRIT methods, for small perturbations (high SNR).
Our results suggest the following.

1. The numerical behavior of the solution in the case of small data perturba-
tions indeed exhibits the patterns predicted by Theorem 4.5, in particular
the qualitative dependence of the reconstruction error on the values of the
parameters of the problem.

2. The Prony solution method largely fails to separate the parameters which
could be separated in theory. Furthermore, its performance actually degrades
when the highest coefficient |a; ;,—1| is increased. ESPRIT separates the pa-
rameters better than Prony but is still worse than optimal.

3. In terms of absolute reconstruction error, ESPRIT is better than Prony but
still worse than the optimal least squares.

4. In terms of dependence of the reconstruction error on the model order and
the node separation, both Prony and ESPRIT behave close to the predicted
law, namely, exponential increase in the order and polynomial increase in the
separation distance.

7. Discussion. We believe that the analytical approach of this paper has the
potential to provide relatively complete answers to several important questions related
to stable solution of Prony-type systems, as briefly discussed below.

The numerical experiments suggest that the least squares method approximates
the optimal “local” behavior very well. However, it is well known that a very accurate
initial approximation is required in order to find the global minima. It is customary to
use one of the global solution methods to obtain such an initial value. Further analysis
of the Prony sets Mg s may provide explicit conditions for such an initialization to
be sufficiently close to the true solution.

The general case S > R should be well understood in order to estimate the
feasibility of taking more measurements than strictly needed (oversampling). Without
assumptions on the noise, it is not a priori obvious that averaging should improve the
accuracy in any way. Again, such an understanding is hopefully achievable via the
investigation of Mg g with S > R.

In practice it is often the case that neither the number of nodes K nor the numbers
{l;} are known a priori, but only their upper bounds are. In this case, given a noisy
measurement vector, more than one “explanation” is possible for this data, in which
case a good reconstruction algorithm needs somehow to select the “optimal” configu-
ration. One possible way to achieve this goal is to characterize, for each configuration
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of the system (i.e., {K, {li}i-il}), the “stable regions” of the corresponding measure-
ment sets Mp g for which the accuracy function ACC does not exceed a predefined
upper bound. Based on the initial measurement ¢ € C° and the error bound &, an
algorithm would choose the closest “stable measurement set,” i.e., select a configu-
ration for which the local accuracy is optimal. Using this approach, collision of two
nodes &;, & can in principle be handled in a stable way by substituting the configura-
tion {K, {ll}f:l} with { —1,{l1,...,l; +1;,...,lc}} once the measurement vector
leaves the stability region associated with the former configuration. In this regard, we
note that such a singular behavior has been studied in [48] (see also [33]), where it is
shown that if the solution is represented in the basis of divided differences, then the
inverse operator is uniformly bounded with respect to the corresponding expansion
coefficients. Analogous developments for extraction of multiple roots of polynomials
[49] might be very relevant as well.

In order to achieve the above goals, we propose computing the function ACC as
accurately as possible. For that purpose, more detailed analysis of the Prony map’
is necessary. In particular, its essential nonlinearity should be quantified using the
second-order terms in the Taylor expansion.

In addition to (1.5), other generalizations of the basic Prony system (1.1) appear
in applications. One such extension arises in Eckhoff’s method [21] for reconstructing
piecewise-smooth functions from Fourier coefficients. There, an additional parameter
appears: namely, the measurements my are given starting from some large index
k = M. In [11], we presented an algorithm for solving this system with high accuracy
(in the sense of asymptotic rate of convergence as M — o0). However, the question of
“maximal possible accuracy” for this problem is still open. It will be most desirable to
reinterpret those results in the sense of global stability bounds for Prony-like systems.
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