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ABSTRACT
This paper presents some recent progress on the problem of re-
constructing piecewise-smooth functions with unknown singu-
larity locations from Fourier measurements, using the method-
ology of Algebraic Signal Sampling - both on uniform and non-
uniform grids. We describe an explicit reconstruction algorithm
which can recover both the locations of the singularities and the
pointwise values of the function with accuracy which is “half as
accurate” compared to the “classical” approximation theory for
smooth functions.
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1. INTRODUCTION

Consider the problem of reconstructing a piecewise-smooth
function f : [−π, π] → R with a finite number of jump dis-
continuities at unknown locations from a finite number of its
Fourier samples

ck(f)
def
=

1

2π

∫ π

−π
f(t) e−ıkt d t, k = 0, 1, . . . , N.

This problem is very important in many applications (such
as spectral methods in PDEs, tomographic reconstruction and
others, see e.g. [12]). For smooth functions, simple summation
of the Fourier series provides very good reconstruction. For ex-
ample, if f ∈ Cd then the (pointwise) reconstruction error from
the first N Fourier coefficients is of the order N−d. However,
the presence of jumps leads to slow convergence of the Fourier
series, and as a result the reconstruction error is often very large
(especially near the jumps, this effect commonly being known
as the “Gibbs phenomenon”). Possibility of an accurate recon-
struction also in the presence of jumps is being extensively in-
vestigated up to this day - see for example [2, 8, 9, 12, 15, 17]
(more comprehensive list may be found in [6]). It is generally
accepted that the most difficult remaining problem is the accu-
rate determination of the jump locations, or “edges”, from the
Fourier data. We have previously conjectured ([5, 10]) that there
is a nonlinear algebraic procedure reconstructing any signal in
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the class of piecewise Cd functions from its first N coefficients
with the overall accuracy of order N−d, including the jump po-
sitions as well as the smooth pieces.

Our main result is as follows:

Theorem 1. Let f : [−π, π] → R have K jump discontinu-
ities {ξj}Kj=1, and let it be d1-times continuously differentiable
between the jumps.

Then for every integer d satisfying 2d + 1 ≤ d1, there exist
explicit constants C1,K1 depending on several a-priori bounds
(concerning the geometry and the magnitudes of the jumps)
such that for all N > K1 one can reconstruct the locations
of the jumps with error ∼ N−d−2, and the whole f with the
pointwise accuracy

∣∣∣f̃(y)− f(y)
∣∣∣ ≤ C1 ·N−d−1

from the first N Fourier coefficients of f .

In other words, the “jumps” (and subsequently the point-
wise values) can be reconstructed with at least half the conjec-
tured accuracy. We present an explicit reconstruction algorithm
and provide estimates for its accuracy (full details will be pub-
lished elsewhere, see [6]). We also present numerical evidence
which both confirms the theoretical estimates and also suggests
that the attained asymptotic accuracy might be the best possible
one.

We discuss also the reconstruction problem for non-uniform
Fourier samples in Section 5.

Our approach can be regarded as a kind of “Algebraic Sig-
nal Sampling”, which is applicable to situations where the sig-
nal has certain “simple” structure, i.e. can be represented by a
small number of parameters ([5, 16]). Some other examples of
this general approach include: signals with finite rate of inno-
vation ([7, 18]), reconstruction of planar shapes from real and
complex moments ([4, 13]), and also piecewise D-finite mo-
ment inversion and reconstructing combinations of shifts of a
given function ([3, 5]).



2. ALGEBRAIC FOURIER RECONSTRUCTION

Assume the notation of Theorem 1. Denote the associated jump
magnitudes of f at ξj by

Al,j
def
= f (l)(ξ+j )− f (l)(ξ−j )

We write the piecewise smooth f as the sum f = Ψ + Φ,
where Ψ(x) is smooth and periodic and Φ(x) is a piecewise
polynomial of degree d, uniquely determined by {ξj} , {Ai,j}
such that it “absorbs” all the discontinuities of f and its first d
derivatives. If we knew what Φ is, we could then reconstruct
Ψ from the known quantities {ck(f)− ck(Φ)} very accurately.
This idea (known as “convergence acceleration”) is very old and
goes back at least to A.N.Krylov ([14]). But what if Φ is un-
known a-priori? A key observation (first proposed by K.Eckhoff
in [8]) is that if Ψ is sufficiently smooth, then the contribution
of ck(Ψ) to ck(f) is negligible for large k. Therefore, for some
large enough M < N one can write an approximate equality

ck(f) ≈ ck(Φ) k ≥M.

Substituting {ξj} , {Ai,j} into the expression for ck(Φ) yields
the following system of algebraic equations (see [6, 8]):

ck (f) ≈ 1

2π

K∑
j=1

ωkj

d∑
l=0

Al,j
(ık)l+1

k = M,M + 1, . . . , N

(1)
where ωj

def
= e−ıξj . Solving this system with high accuracy will

give us an accurate approximation for Φ, and, subsequently, for
f itself.

Variations of the system (1) appear also in [2, 8, 15] in sim-
ilar contexts. Our solution method, outlined below, is different
from the methods presented there, and it allows for explicit ac-
curacy analysis in the most generic case. Our approach can be
summarized as follows:

1. Obtain approximate positions of the jumps (using for ex-
ample Eckhoff’s method of order zero - [8]).

2. Localize each ξj by convolving the original function in
the Fourier domain with a C∞ “bump” function centered
at the above approximate jump position.

3. Solve the system (1) separately for each ξj with high ac-
curacy.

The first two steps are fairly straightforward, thus we shall
not elaborate them here - full details are to be found in [6]. Here
let us only mention that these steps do not destroy the asymp-
totic estimates of item 3 above. The last step is described in
Section 3 below. The key idea is to decouple the reconstruction
order (the integer d in (1)) from the real smoothness of f - the
actual number of continuous derivatives (the integer d1 in The-
orem 1). Once we assume that d1 > d, the error term in the
left-hand side of (1) has an additional structure (see (6) below),
resulting in remarkable cancellations in the solution.

3. SINGLE JUMP

Let d be fixed. As explained above, we can now consider the
system (1) for a single jump point:

ck(f) ≈ ωk

2π

d∑
l=0

Al
(ık)l+1

k = M, . . . ,M + d+ 1. (2)

For simplicity, we take the number of equations to be equal to
the number of unknowns. (It is not clear that this choice is op-
timal.) Now we consider the system (2) to be a perturbation of
the exact system

ck(Φ) =
ωk

2π

d∑
l=0

Al
(ık)l+1

k = M, . . . ,M + d+ 1. (3)

in the sense that solutions to (3) are perturbations of solutions of
(2). Eliminating {A0, . . . , Ad} from (3) gives us for each k ∈ N
a single equation pk(ω) = 0 where pk(z) is a polynomial of
degree d+ 1 defined as follows:

mk
def
= 2π(ık)d+1ck(Φ) = ωk

d∑
l=0

(ık)d−lAl

pk(z)
def
=

d+1∑
j=0

(−1)
j

(
d+ 1

j

)
mk+jz

d+1−j

(4)

The values mk are unknown, but we can approximate them
with the known quantities rk

def
= 2π (ık)

d+1
ck(f). Then we

define

qk(z)
def
=

d+1∑
j=0

(−1)j
(
d+ 1

j

)
rk+jz

d+1−j (5)

As k → ∞, we know that rk → mk and therefore the roots of
qk(z) approach those of pk(z). One of these latter roots is ω,
which is precisely the value we seek. Those two sequences of
polynomials subsequently become our main objects of study.

Assume that f has in fact d1 ≥ d continuous derivatives
everywhere in [−π, π] \ {ξ}. Then the Fourier coefficients of f
can be written as

ck(f) = ck(Φ) +
ωk

2π

d1∑
l=d+1

Al

(ık)
l+1

+ ck(Ψ∗) (6)

such that |ck(Ψ∗)| ≤ R∗k−d1−2 for some constant R∗. Denote

H
def
= max

(
2,

d1∑
l=0

|Al|

)
+R∗

Then we have the following result.

Theorem 2. Let f have d1 ≥ 2d + 1 continuous derivatives
everywhere in [−π, π] \ {ξ}. Let qk(z) be as defined in (5), and

let
{
κ
(k)
i

}d
i=0

denote its roots, such that
∣∣∣κ(k)0

∣∣∣ ≤ . . .
∣∣∣κ(k)d

∣∣∣.
Let {φi}di=1 denote the roots of the Laguerre polynomial L(1)

d ,



such that |φ1| < . . . |φd|. Let y(k)0 = ω and y(k)i = ω

1−φik
for

i = 1, . . . , d. Then there exist constants C2, C3, C4 and K2

such that for every k > K2H the following statemenets are
true:

1. The numbers
{
y
(k)
i

}
lie on the ray Oω, so that

∣∣∣y(k)i

∣∣∣ ≥
1, and they are sufficiently separated:

C2k
−1 ≤

∣∣∣y(k)i − y
(k)
j

∣∣∣ 0 ≤ i < j ≤ d

2. Each of the numbers
{
κ
(k)
i

}d
i=1

is close to some y(k)i :∣∣∣κ(k)i − y
(k)
i

∣∣∣ ≤ C3 ·H · k−2

3. The smallest κ(k)0 is very close to ω:∣∣∣κ(k)0 − ω
∣∣∣ ≤ C4 ·H · k−d−2

Proof outline. We apply perturbation analysis to qk(z), us-
ing Rouche’s theorem from complex analysis. First we write
qk(z) = pk(z) + ek(z). Then we consider small disks around
each one of the roots of pk, whose diameters shrink as k →∞,
and such that |pk(z)| > |ek(z)| for all z on the boundaries of
these disks. Then we conclude that qk has a root which is close
to the corresponding root of pk. The roots of pk, in turn, lie
close to the numbers y(k)i by similar reasoning - the polynomials
pk turn out to be certain perturbations of generalized Laguerre
polynomials ([1, Chapter 22]).

The immediate consequence of Theorem 2 is that for every
M > K2H , the root of qM (z) which is closest to the unit cir-
cle will provide an approximation to ω up to order M−d−2.
Now this approximate value can be substituted back into (2),
which becomes a linear system with respect to the unknowns
A0, . . . , Ad. The error in the left-hand side of this system is
again given by (6). Subsequently, the error in the solution is
given by the following theorem.

Theorem 3. Assume that d1 ≥ 2d + 1 and k > K2H , so that
by Theorem 2 we have

∣∣ω̃(k) − ω
∣∣ ≤ C4 · H · k−d−2. Then

there exist constants C5,K3 such that for every k > K3H and
l = 0, 1, . . . d the error in determining Al is∣∣∣Ã(k)

l −Al
∣∣∣ ≤ C5 ·H2 · kl−d−1

4. NUMERICAL EXPERIMENTS

We have performed a number of experiments for reconstructing
a function with a single jump. The jumps locations, magnitudes
and the smooth pieces were chosen randomly. The results are
presented in Figures 1 and 2. The optimality of d = d1

2 − 1,
as well as the asymptotic order of convergence, are clearly seen
to fit the theoretical predictions. The instability and eventual
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Fig. 1. Reconstruction of a single jump. Accuracy of recon-
struction with d = 3 and d1 = 11, as a function of M .
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Fig. 2. Dependence of the accuracy on the order with fixed
smoothness d1 = 8, with increasing M .

breakup of the measured accuracy for large values of M is due
to the finite-precision calculations.

The case of more than one jump was also investigated nu-
merically and the results fit the theoretical predictions as well,
but this requires a separate discussion.

5. NON-UNIFORM MEASUREMENTS

Fourier coefficients ck(f) of f can be considered as samples
of the Fourier transform F(f) at the integer points. An im-
portant problem is to extend the results above to the non-
uniform samples of F(f). So we fix a “sampling set” Z =
{s1, s2, . . . }, sj ∈ R and get as the “measurements” the gener-
alized Fourier coefficients

csj (f) =

∫ ∞
−∞

e−2πısjx f(x) dx.

To simplify the presentation consider “signals” of the form
f(x) =

∑n
i=1Aiδ(x − xi). Reconstruction of piecewise

smooth functions from non-uniform Fourier measurements can
be treated in a similar way and we plan to present it separately.



We utilize the fact that for f a linear combination of δ-
functions its Fourier transform F(f)(s) is an exponential poly-
nomial

∑n
i=1Ai e−2πısxi . Then we use a “discrete” version

of the classical Turan-Nazarov inequality recently obtained in
[11, 19], and, in particular, a metric invariant ω(Z) introduced
there using metric entropy of Z. We obtain the following result:

Theorem 4. Assume that ω(Z) > 0. Then for any f as
above the usual Fourier coefficients ck(f), |k| ≤ N can be
uniquely reconstructed from the samples csj (f) for sj ∈ Z.
The uniform norm of the reconstruction operator is bounded by

e2N
(

4N
ω(Z)

)n
.

The invariant ω(Z) usually can be accurately estimated in
explicit geometric terms. In particular, this can be done for Z
arising as zeroes of the Fourier transform of the shifted signals,
as it appears in the decoupling procedure described in [5] for
linear combinations of shifts of several signals.

6. CONCLUSIONS AND FUTURE WORK

We have demonstrated that the algebraic reconstruction meth-
ods can achieve at least “half the classical” accuracy in the
Fourier inversion problem for piecewise-smooth data. An im-
portant question remains: is this accuracy the best possible one?

The algebraic system (1) appears (in various disguises) in
several nonlinear reconstruction methods in Signal Processing
([3, 4, 5, 7, 13, 18]). We hope that our results might be relevant
to those methods as well.
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