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ABSTRACT
We consider polynomial systems of Prony type, appearing
in many areas of mathematics. Their robust numerical solu-
tion is considered to be difficult, especially in“near-colliding”
situations. We transform the nonlinear part of the Prony
system into a Hankel-type polynomial system. Combining
this representation with a recently discovered “decimation”
technique, we present an algorithm which applies homotopy
continuation on a sequence of modified Hankel-type systems
as above. In this way, we are able to solve for the nonlinear
variables of the original system with high accuracy when the
data is perturbed.

Categories and Subject Descriptors
G.1.0 [General]: Conditioning (and ill-conditioning); G.1.5
[Roots of Nonlinear Equations]: Continuation (homo-
topy) methods

General Terms
Algorithms

Keywords
Prony systems, decimation

1. INTRODUCTION
Consider the following approximate algebraic problem.

Problem 1. Given (m̃0, . . . , m̃N−1) ∈ CN , find s ∈ N, a
multiplicity vector D = (d1, . . . , ds) ∈ Ns with d :=

∑s
j=1 dj

and 2d < N , and complex numbers {zj , {aℓ,j}
dj−1

ℓ=0 }sj=1 with

adj−1,j ̸= 0 such that for some perturbation vector (ϵk) ∈ CN

with |ϵk| < ε we have

m̃k =

s∑
j=1

z
k
j

dj−1∑
ℓ=0

aℓ,jk
ℓ

︸ ︷︷ ︸
:=mk

+ϵk, k = 0, . . . , N − 1. (1)
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This so-called “Prony problem” appears in signal process-
ing, frequency estimation, exponential fitting, Padé approx-
imation, sparse polynomial interpolation, spectral edge de-
tection, inverse moment problems and recently in theory of
super-resolution (see [2, 4, 7, 8] and references therein).
The high degree of symmetry in the system of equations

(1) allows to separate the problem into a linear and a nonlin-
ear part. The basic observation (due to Baron de Prony [12])
is that the sequence of exact measurements {mk} satisfies a
linear recurrence relation

d∑
ℓ=0

mk+ℓcℓ = 0, k ∈ N, (2)

where {cℓ} are defined by
∏s

j=1(z − zj)
dj ≡

∑d
ℓ=0 cℓz

ℓ.
Based on the above observation, several algorithms have
been proposed for recovering the “nodes” {zj}sj=1, such as
MUSIC/ESPRIT, matrix pencils and Variable Projections
(VARPRO). While the majority of these algorithms per-
form well on simple and well-separated nodes (i.e. with
D = (1, 1, . . . , 1)), they are poorly adapted to handle ei-
ther multiple/clustered nodes, non-Gaussian noise or large
values of N ([6, 10]).
Robust detection of these near-singular situations, i.e. cor-

rect identification of the collision pattern D is, therefore, one
of the most important questions of interest. While the inte-
ger d can be estimated via numerical rank computation of
the so-called “data matrix” (see [4, 5]), the determination of
D is a more delicate task, which requires an accurate esti-
mation of the distance from the data point to the nearest
“pejorative” manifold of larger multiplicity, and comparing
it with the a-priori bound ε on the error. We hope that
the present (and future) symbolic-numeric techniques such
as [11] will eventually provide a satisfactory answer to this
question.
Once D is determined, it remains to actually solve the

system with maximal possible accuracy. In what follows we
concentrate on this latter task and leave the more challenging
problem of multiplicity pattern detection to future research.
We assume throughout that |zj | = 1.

2. REGULARIZATION VIA DECIMATION
In many applications, the number of available measure-

ments N can be larger than the “problem size” R := d + s.
Thus an important question arises: how to efficiently uti-
lize the additional measurements? On one hand, methods
such as ESPRIT compute an SVD on the full data ma-
trix (of size N × R), which requires O

(
N2R

)
operations,

and this can become prohibitive for large N . On the other
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