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ABSTRACT

We consider polynomial systems of Prony type, appearing
in many areas of mathematics. Their robust numerical solu-
tion is considered to be difficult, especially in “near-colliding”
situations. We transform the nonlinear part of the Prony
system into a Hankel-type polynomial system. Combining
this representation with a recently discovered “decimation”
technique, we present an algorithm which applies homotopy
continuation on a sequence of modified Hankel-type systems
as above. In this way, we are able to solve for the nonlinear
variables of the original system with high accuracy when the
data is perturbed.

Categories and Subject Descriptors

G.1.0 [General]: Conditioning (and ill-conditioning); G.1.5
[Roots of Nonlinear Equations|: Continuation (homo-
topy) methods

General Terms
Algorithms
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INTRODUCTION

Consider the following approximate algebraic problem.
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PROBLEM 1. Given (o, ...
multiplicity vector D = (d1, ...

,mN—1) €CY, find s €N, a
,ds) € N* with d =377, d;
and 2d < N, and complex numbers {z;, {a[’j}zligl}‘?:l with
ad;—1,; # 0 such that for some perturbation vector (ex) € C
with |ex| < € we have
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This so-called “Prony problem” appears in signal process-
ing, frequency estimation, exponential fitting, Padé approx-
imation, sparse polynomial interpolation, spectral edge de-
tection, inverse moment problems and recently in theory of
super-resolution (see [2, 4, 7, 8] and references therein).

The high degree of symmetry in the system of equations
(1) allows to separate the problem into a linear and a nonlin-
ear part. The basic observation (due to Baron de Prony [12])
is that the sequence of exact measurements {my} satisfies a
linear recurrence relation

d
kaHCz =0, k eN, (2)
=0

where {c¢} are defined by [[’_,(» — 24 = Zj:o ezt
Based on the above observation, several algorithms have
been proposed for recovering the “nodes” {z;}j_;, such as
MUSIC/ESPRIT, matrix pencils and Variable Projections
(VARPRO). While the majority of these algorithms per-
form well on simple and well-separated nodes (i.e. with
D = (1,1,...,1)), they are poorly adapted to handle ei-
ther multiple/clustered nodes, non-Gaussian noise or large
values of N ([6, 10]).

Robust detection of these near-singular situations, i.e. cor-
rect identification of the collision pattern D is, therefore, one
of the most important questions of interest. While the inte-
ger d can be estimated via numerical rank computation of
the so-called “data matrix” (see [4, 5]), the determination of
D is a more delicate task, which requires an accurate esti-
mation of the distance from the data point to the nearest
“pejorative” manifold of larger multiplicity, and comparing
it with the a-priori bound ¢ on the error. We hope that
the present (and future) symbolic-numeric techniques such
as [11] will eventually provide a satisfactory answer to this
question.

Once D is determined, it remains to actually solve the
system with maximal possible accuracy. In what follows we
concentrate on this latter task and leave the more challenging
problem of multiplicity pattern detection to future research.

We assume throughout that |z;| = 1.

2. REGULARIZATION VIA DECIMATION

In many applications, the number of available measure-
ments N can be larger than the “problem size” R := d + s.
Thus an important question arises: how to efficiently uti-
lize the additional measurements? On one hand, methods
such as ESPRIT compute an SVD on the full data ma-
trix (of size N X R), which requires O (N2R) operations,
and this can become prohibitive for large N. On the other



hand, since the recurrence relation (2) is valid for all k € N,
another possibility is to solve a sequence of square prob-
lems (by whatever method) with consecutive data segments
{mk,...,mrir_1}n—". However, in [3] we show that it is
much more preferable from the numerical point of view to
consider “decimated” sequences {mo, mp, Map, ..., M(R-1)p}
for appropriate choices of the “decimation parameter” p € N.
In particular, the condition number of the node z; (estimated
via the corresponding data-result mapping [13]) is shown to
be proportional to p~%. When N > 1, the decimation pa-
rameter can be taken to be arbitrarily large as well. Based
on rigorous analysis of the case s 1 in the special set-
ting of [2], and initial numerical verifications in the general
case, we conjecture that the decimation technique provides
asymptotically (w.r.t. N) accurate approximation to the full
overdetermined problem. Apparently, when N — oo, deci-
mation with parameter p turns a poorly conditioned multiple
root z; into a collection of well-separated, well-conditioned
simple roots, one of which is z;’.

3. RECONSTRUCTION ALGORITHM

We present a novel algorithm for recovering the nodes {z;}
from the perturbed measurements {rix}n ., consisting of
two main ingredients.

First, starting from (2) and writing the c¢’s via Vieta's
formulas, we arrive at the following relation for all £k € N:

d
ka“ad._g(zl,...,zl,...,zs,...,zs)=0 (3)
i—0 e, e’ Dt

xdy xdg

with respect to the unknowns 21, . .., zs, where o;(. .. ) is the
elementary symmetric function of order j in d variables'.

Then, we apply decimation technique to (3) and construct
a sequence Hp of decimated s x s square Hankel-type systems
from the perturbed measurements {7 }:

d
. # P P
Hp : { > mpqipoa—i (5. s SR
i=0

The algorithm proceeds as follows:

1. Input: D, approximations to {z;}, cutoff parameter p,
the sequence {7t }.

2. Choose appropriate decimation parameters p which lo-
cally minimize the condition number (computed using
the initial approximations).

3. For each p as above, solve ‘H; via homotopy continua-
tion for the variables wy = 27,...,ws = 2%.

4. For each computed solution zp = (27,...,2%), choose
among the possible p approximations for each compo-
nent the ones which fall within distance p from the
initial approximation.

NUMERICAL RESULTS
The proposed Decimated Homotopy (DH) algorithm has
been implemented using MATLAB’s interface to PHCPACK
Release 2.3.87 [9]. We have compared its performance with
generalized ESPRIT algorithm [1]. The results can be sum-
marized as follows (see an example in Figure 1):

4.

!This transformation is essentially equivalent to elimination
of the linear variables a¢; from (1), written in the basis of
finite differences [4].
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Figure 1: A sample run of DH vs ESPRIT. (CN is
Condition Number.)

1. The accuracy of DH is comparable with, and some-
times surpasses ESPRIT by 1-2 significant digits.

2. DH achieves desired accuracy in larger number of cases.

3. The running time of each iteration of DH is constant
(depending only on the number of parameters R), while
running time of ESPRIT grows with N.
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