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Abstract
We consider the problem of exact reconstruction of univariate functions
with jump discontinuities at unknown positions from their moments. These
functions are assumed to satisfy an a priori unknown linear homogeneous
differential equation with polynomial coefficients on each continuity interval.
Therefore, they may be specified by a finite amount of information. This
reconstruction problem has practical importance in signal processing and other
applications.

It is somewhat of a ‘folklore’ that the sequence of the moments of such
‘piecewise D-finite’ functions satisfies a linear recurrence relation of bounded
order and degree. We derive this recurrence relation explicitly. It turns out that
the coefficients of the differential operator which annihilates every piece of the
function, as well as the locations of the discontinuities, appear in this recurrence
in a precisely controlled manner. This leads to the formulation of a generic
algorithm for reconstructing a piecewise D-finite function from its moments.
We investigate the conditions for solvability of resulting linear systems in the
general case, as well as analyse a few particular examples. We provide results
of numerical simulations for several types of signals, which test the sensitivity
of the proposed algorithm to noise.

1. Introduction

Consider the problem of reconstructing an unknown function g : [a, b] → R from some finite
number of its power moments

mk(g) =
∫ b

a

xkg(x) dx, k = 0, 1, . . . , M. (1.1)

This formulation is a ‘prototype’ for various problems in signal processing, statistics,
computer tomography and other areas (see [1, 17, 27] and references therein). In all practical
applications, it is assumed that g belongs to some a priori known class, and it can be faithfully
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specified by a finite number of parameters in that class. For example, smooth signals may be
represented as elements of some finite-dimensional Hilbert space and then the reconstruction
problem is analysed in the classical framework of linear approximation—see [1, 32] for
thorough expositions.

In recent years, novel algebraic techniques for moment inversion have been developed.
One reason for their appearance is the unsatisfactory performance of the classical
approximation methods when applied to irregular data. The famous ‘Gibbs effect’ due to
a jump discontinuity probably provides the best-known example of such undesired behaviour.
In [14], it is shown that only nonlinear methods have a chance to achieve the same order of
approximation for such discontinuous signals as conventional (linear) methods do for smooth
signals. The various nonlinear methods developed recently include the framework of signals
with a finite rate of innovation [5, 9, 33], Padé-based methods [3, 10, 25], and other algebraic
schemes [4, 11, 22]. Methods for reconstructing planar shapes from complex moments are
developed in [17, 18]. In [21], an approach based on Cauchy-type integrals is presented. In
[27], several of the above methods are reviewed in detail, while emphasizing the mathematical
similarity between the corresponding inversion systems.

The present paper develops a general method for explicit inversion of the moment
transform for functions which are piecewise solutions of linear ODEs with polynomial
coefficients (precise definitions follow). In particular, the method allows us to locate the
discontinuities of the function by purely algebraic means. The algebra involved is in the spirit
of holonomic combinatorics [35]. We believe that the tools developed in this paper may shed
a new light on the similar structure of the algebraic equations which appear in [11, 18, 25,
27, 33].

1.1. Overview of main results

Let D denote an arbitrary linear differential operator with polynomial coefficients

D =
N∑

j=0

pj (x)∂j , (1.2a)

pj (x) =
kj∑

i=0

ai,j x
i, ai,j ∈ R, (1.2b)

where ∂ is the differentiation operator with respect to x: ∂if
def= di

dxi f = f (n)(x) and ∂0 = I,
the identity operator. If some function g satisfies Dg ≡ 0, we say that D annihilates g and also

write g ∈ ND
def= {f : Df ≡ 0}. These functions are called ‘D-finite’ (‘differentiably finite’

[30]).
The class AD of ‘piecewise D-finite’ functions is defined in the following

way: for n = 0, 1, . . . ,K, let �n
def= [ξn, ξn+1] be a partition of [a, b] such that

−∞ < a = ξ0 < ξ1 < · · · < ξK+1 = b < +∞ (the case K = 0 corresponds to functions
consisting of a single ‘piece’). We say that g ∈ AD if there exist operators Dn such that
on each ‘continuity interval’ �n, the nth piece of g equals, say, gn(x), such that Dngn ≡ 0.
In the most general setting, the annihilating operators Dn may be pairwise different. In this
paper, we explicitly treat functions for which Dn ≡ D for all 0 � n � K. We write g ∈ A∗

D

in this particular case.
We shall always assume that the leading coefficient of Dn does not vanish at any point of

�n.
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We are interested in solving the following problem.

Operator-Based Moment Reconstruction Problem. Let us give the sequence of the moments
(1.1) of an unknown function g ∈ AD and the constants K, N, {kj }, a, b.

(a) Find the operator D (in the general case, the operators Dn), that is, determine the
coefficients ai,j (respectively ai,j,n) as in (1.2) such that Dngn ≡ 0 for all 0 � n � K.

(b) Find the ‘jump points’ {ξn}Kn=1.
(c) Let {ui}Ni=1 be a basis for the linear space ND. Find constants αi,n such that

gn(x) = ∑N
i=1 αi,nui(x). That is, determine each concrete solution of Dngn = 0 on

�n.

Example 1.1. Let g(x) = α eβx be our unknown function on [0, 1]. The parameters of
the problem are K = 0,D = ∂ − βI, [a, b] = [0, 1], and the unknowns are α, β. Direct
calculation of the moments yields{

α(eβ − 1) = βm0

α eβ = βm1 + m0.
(1.3)

Denoting m1
m0

def= A, (1.3) amounts to⎧⎪⎪⎨⎪⎪⎩
1

1 − e−β
− 1

β
= A

βm0

eβ − 1
= α.

(1.4)

This system does not have an explicit analytic solution. It can be solved numerically (for
example, using Newton’s method), and a unique solution exists provided A ∈ (0, 1) (the
graph of the function y = 1

1−e−x − 1
x

is monotone in whole R and 0 < y(x) < 1).

The above solution is unsatisfactory for several reasons. First, it is not general enough.
Second, the solution is available only as an approximation and not in a closed form. However,
there is an important positive feature: the minimal possible number of measurements are used.
Using our method, example 1.1 will be solved later in a more convenient and general way—see
examples 2.2 and 3.1.

Our method is based on the following results which we prove below (sections 2.1, 2.2 and
3.1). These results establish explicit relations between the known and the unknown parameters
of the reconstruction problem.

Theorem [2.9, 3.1]. Let K = 0 and Dg ≡ 0. Then the moment sequence of g satisfies a linear
recurrence relation with coefficients linear in ai,j . Consequently, the vector a = (ai,j ) satisfies
a linear homogeneous system Ha = 0, where the entries of H are certain linear combinations
of the moments of g whose coefficients depend only on N and the endpoints a, b.

Theorem [2.12]. Let K > 0 and let D annihilate every piece of g ∈ A∗
D

. Then the operator
given by D̂ =(∏K

i=1(x − ξi)
N I
)·D annihilates g as a distribution. Consequently, conclusions

of theorems 2.9 and 3.1 are true with D replaced by D̂.

Proposition [3.3]. Let g ∈ A∗
D

with operator D annihilating every piece gn. Let {ui}Ni=1

be a basis for the linear space ND and gn(x) = ∑N
i=1 αi,nui(x). Then the vector α of the

coefficients αi,n satisfies a linear system Cα = m, where the matrix C contains the moments
of ui and the vector m contains the moments of g.

Based on the above results, the proposed solution to the reconstruction problem is as
follows (section 3.2).
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(1) If K > 0, replace D with D̂ =(∏K
i=1(x − ξi)

N I
)·D.

(2) Build the matrix H and solve the system Hx = 0, where x is the vector of unknown
coefficients of D or D̂ according to the previous step. Obtain a solution a and build the
differential operator D∗ = Da which annihilates g in its entirety (as a distribution in the
case K > 0 or in the usual sense otherwise).

(3) If K > 0, recover {ξi} and the operator D† (which annihilates every piece of g) from D∗.
(4) Compute the basis for ND† and solve the system Cα = m.

Conditions for the solvability of the above systems are discussed and few initial results
in this direction are obtained in section 3.3. Results of numerical simulations, presented in
section 4, suggest that the method is practically applicable to several different signal models,
including piecewise constant functions (and piecewise polynomials), rational functions and
piecewise sinusoids.

2. Recurrence relation for moments of piecewise D-finite functions

2.1. Single continuity interval

We start with the case of a D-finite function g on a single continuity interval [a, b]. The main
tools used in the subsequent derivation are the discrete difference calculus and the Lagrange
identity for a differential operator and its adjoint. Let us briefly introduce these tools.

Let s : N → R be a discrete sequence. The discrete shift operator E is defined by

E s(n) = s(n + 1), and the forward difference operator by �
def= E − I. We shall express

recurrence relations in terms of polynomials in E or �. For example, the Fibonacci sequence

Fk satisfies E2Fk = EFk + Fk , so the operator P(E)
def= E2 − E − I is an annihilating difference

operator for Fk . Likewise, the operator � annihilates every constant sequence.

Lemma 2.1 [13]. Let p(E) be a polynomial in the shift operator E and let g(n) be any discrete
function. Then

p(E)(bng(n)) = bnp(bE)g(n).

Lemma 2.2 [13]. For any polynomial p(n) of degree k and for i � 1,

�k+ip(n) = 0.

Definition 2.3. Let x ∈ R and k ∈ N. The kth falling factorial1 of x is

(x)k
def= x(x − 1) · · · (x − k + 1).

The following well-known properties of the falling factorial are immediately derived from
definition 2.3.

Proposition 2.4. Let x ∈ R, k ∈ N. Then,

(1) (x)k is a polynomial in x of degree k (thus it is also called the factorial polynomial).
(2) If x = n ∈ N and n � k, then (n)k = n!

(n−k)! .
(3) If x = n ∈ N ∪ {0} and n < k, then (n)k = 0.

1 The Pochhammer symbol (x)n is also used in the theory of special functions. There it usually represents the rising
factorial (x)n = x · (x + 1) · · · (x + n − 1).
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The formal adjoint of a differential operator D = ∑N
j=0 pj (x)∂j is given by

D∗{·} def=
N∑

j=0

(−1)j ∂j {pj (x)·}. (2.1)

The operator and its adjoint are connected by the Lagrange identity [19]: for every u, v ∈ CN

vD(u) − uD∗(v) = d

dx
PD(u, v) (2.2)

where PD(u, v) is the bilinear concomitant—a homogeneous bilinear form which may be
written explicitly as [19, p 211]

PD(u, v) = u{p1v − ∂(p2v) + · · · + (−1)N−1∂N−1(pNv)}
+ u′{p2v − ∂(p3v) + · · · + (−1)N−2∂N−2(pNv)}
+ · · ·
+ u(N−1)pNv. (2.3)

If (2.2) is integrated between a and b, Green’s formula is obtained:

〈Du, v〉 − 〈u,D∗v〉 = [PD(u, v)]ba, (2.4)

where the inner product is defined by 〈u, v〉 def= ∫ b

a
uv dx.

Let D and g be arbitrary. Consider the ‘differential moments’ associated with D:

mD
k (g)

def= mk(Dg).

By (2.4), we have

mk(Dg) = 〈Dg, xk〉 = 〈g,D∗(xk)〉 + [PD(g, xk)]ba.

Let us define the following two sequences, indexed by k:

μk = μk(D, g)
def= 〈g,D∗(xk)〉,

εk = εk(D, g)
def= [PD(g, xk)]ba.

The sequence of the differential moments is therefore the sum of the two sequences:

mk(Dg) = μk(D, g) + εk(D, g). (2.5)

Using (1.2) and (2.1) we have

μk = 〈g,D∗(xk)〉 =
〈
g,

N∑
j=0

(−1)j
dj

dxj
(pj (x)xk)

〉

=
kj∑

i=0

N∑
j=0

ai,j (−1)j (i + k)jmi+k−j (g)
def= �D(k, E)mk, (2.6)

where

� = �D(k, E)
def=
∑
i,j

ai,j	
(i,j)(k, E), 	(i,j)(k, E)

def= (−1)j (i + k)j Ei−j . (2.7)

Now let us return to our main problem. Recall that g is D-finite, so let Dg ≡ 0. (2.5)
combined with (2.6) gives �mk + εk = 0. As we demonstrate below, there exists a discrete
difference operator E = E(E) such that Eεk ≡ 0. Multiplying the last equation by this E
from the left (multiplication being composition of difference operators) gives us the desired
recurrence relation: E · �mk = 0.
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The sequence εk is related to the behaviour of g at the endpoints of the interval [a, b].
The following lemma unravels its structure.

Lemma 2.5. Let D be of degree N as in (1.2). Then there exist polynomials qa(k) and qb(k)

of degree at most N − 1 such that

εk(D, g) = bkqb(k) − akqa(k), k = 0, 1, . . . (2.8)

Proof. Write D = ∑N
j=0 Dj ,where Dj = pj (x)∂j . Denote εk,j

def= εk(Dj , g). By (2.3) we

have εk = ∑N
j=0 εk,j, where

εk,j = PDj
(g, xk) = {

g(j−1)xkpj − g(j−2)∂(xkpj ) + · · · + (−1)j−1g∂j−1(xkpj )
}∣∣b

x=a
.

By the Leibniz rule, we have

∂i(xkpj (x)) =
i∑

l=0

(
i

l

)
(xk)(l)p

(i−l)
j (x) =

i∑
l=0

(
i

l

)
p

(i−l)
j (x)(k)lx

k−l = xk

i∑
l=0

(k)lri,j,l(x),

where ri,j,l(x) = x−l
(
i

l

)
p

(i−l)
j (x) is a rational function. Now

εk,j =
{

xk

j−1∑
i=0

(−1)ig(j−1−i)(x)

i∑
l=0

(k)lri,j,l(x)

}∣∣∣∣∣
b

x=a

=
{

xk

j−1∑
i=0

i∑
l=0

(k)lsi,j,l(x)

}∣∣∣∣∣
b

x=a

= bkqb,j (k) − akqa,j (k),

where si,j,l(x) = (−1)ig(j−1−i)(x)ri,j,l(x) and qα,j (k) = ∑j−1
i=0

∑i
l=0(k)lsi,j,l(α) for

α ∈ {a, b}. qα,j (k) is a polynomial in k of degree at most j − 1 (see definition 2.3). Now

εk =
N∑

j=0

εk,j = bk

N∑
j=0

qb,j (k) − ak

N∑
j=0

qa,j (k).

Take qa(k)
def= ∑N

j=0 qa,j (k) and qb(k)
def= ∑N

j=0 qb,j (k). Since deg qa,j , qb,j < j , we have
deg qa, qb < N and this completes the proof. �

As a side remark, we have the following simple condition for the sequence {εk} to be a
nonzero sequence.

Theorem 2.6. Assume Dg ≡ 0 and pN(x) �= 0 on [a, b]. Then εk(D, g) ≡ 0 if and only if
g ≡ 0.

Proof. From the proof of lemma 2.5 we have, for α ∈ {a, b},

qα(k) =
N∑

j=0

j−1∑
i=0

(−1)ig(j−1−i)(α)

i∑
l=0

(k)lα
−l

(
i

l

)
p

(i−l)
j (α). (2.9)

• In one direction, we have g(α) = · · · = g(N−1)(α) = 0 for α = a, b. By direct
substitution we obtain qα(k) ≡ 0.

• To prove the other direction, assume bkqb(k) ≡ akqa(k) = C. Consider the following
cases:

(1) C �= 0, i.e. a, b �= 0 and qa(k), qb(k) �≡ 0. Then
(

b
a

)k = qa(k)

qb(k)
for all k ∈ N. But this

is impossible because the left-hand side is of exponential growth and the right-hand
side is of at most polynomial growth.

6
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(2) C = 0. Then at least one of qa(k), qb(k) must be identically zero. So let
qa(k) ≡ 0 and a �= 0. The coefficient of the highest-order term of qa corresponds to
j = N, i = l = N − 1 and equals

(−1)N−1g(a)a−(N−1)pN(a).

This is zero only if g(a) = 0. So we can lower the limit of the second summation
in (2.9) to n − 2. Repeating this argument with j = N, i = l = N − 2 shows
that g′(a) = 0. Finally, we obtain that g(a) = · · · = g(N−1)(a) = 0, and by the
uniqueness theorem for linear ODEs we conclude g ≡ 0. �

An immediate corollary is that generically we have E �= I (generically here means g �≡ 0).

With the structure of the sequence {εk} at hand, we can now explicitly construct an
annihilating difference operator for it.

Definition 2.7. Given j, a and b, let Ej

a,b(E)
def= (E − aI)j (E − bI)j .

Theorem 2.8. Let D = ∑N
j=0 pj (x)∂j . Then the difference operator E = EN

a,b annihilates the
sequence εk(D, g).

Proof. By lemma 2.5, εk = bkqb(k) − akqa(k), where deg qa, qb � N − 1. The factors
(E−aI) and (E−bI) commute, so it would be sufficient to show that (E − aI)N {akqa(k)} ≡ 0.

Let p(E) = (E − aI)N , then p(aE) = aN�N . By lemma 2.1,

p(E){akqa(k)} = ak+N�Nqa(k).

Since deg qa � N − 1, by lemma 2.2, we have �Nqa(k) = 0. �

Remark 2.1. Theorem 2.8 defines a connection between the moments of the two functions g

and Dg: Emk(Dg) = E�mk(g). This implies a connection between their moment-generating
functions as well (see further section 3.1 and also [21]).

Remark 2.2. The polynomial nature of the coefficients pj (x) of D has not been used in the
proof of theorem 2.8. Therefore it is true for every linear operator D with sufficiently smooth
coefficients pj (x).

Now we have all the necessary information in order to prove the main result of this section.

Theorem 2.9. Assume that Dg ≡ 0 on [a, b]. Then the sequence {mk(g)} satisfies the
following recurrence relation:

Smk
def= (

EN
a,b · �D

)
mk =

⎛⎝(E − aI)N(E − bI)N
N∑

j=0

kj∑
i=0

ai,j (−1)j (i + k)j Ei−j

⎞⎠mk = 0.

(2.10)

Proof. We have mk(Dg) ≡ 0. The proof is completed using (2.5), (2.6) and theorem 2.8. �

Remark 2.3. With respect to {mk}, the length of the recurrence relation (2.10) is at most
3N + max kj + 1. Its coefficients are linear in ai,j and polynomial in k.

Remark 2.4. The recurrence relation (2.10) is not trivial, i.e. S �= 0. To see this, let Dg ≡ 0.
Now if g �≡ 0, then by theorem 2.6, εk �≡ 0 and thus μk = �mk �≡ 0. It follows that � cannot
be the identical zero operator, and therefore S = E� �= 0.

7
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We conclude this section with some examples which demonstrate the usefulness of
theorem 2.9.

Example 2.1. In [6], the authors provide explicit recurrence relations satisfied by the moments
of the powers of the modified Bessel function f (x) = K0(x). The method used to obtain these
recurrences is integration by parts. However, an additional condition is imposed—namely,
it is required that the integrals

∫



xk(f (x)n)(j) dx converge and the limits of the integrands
coincide at the endpoints of 
. In our setting, this is equivalent to putting E = I.

The function g = K2
0 (x) is annihilated by the operator D = x2∂3 + 3x∂2 +

(1 − 4x2)∂ − 4xI [6, example 2]. The only nonzero coefficients are therefore

ai,j i = 0 i = 1 i = 2
j = 0 −4
j = 1 1 −4
j = 2 3
j = 3 1

By (2.10), we have

−4mk+1 − kmk−1 + 4(k + 2)mk+1 + 3k(k + 1)mk−1 − (k + 2)(k + 1)kmk−1 = 0,

which is just 4(k + 1)mk+1 = k3mk−1. This result agrees with [6, example 3].

Example 2.2 (example 1.1 continued). f = α eβx is annihilated by the operator D = ∂ − βI.
Thus a0,0 = −β and a1,0 = 1. By (2.10) the sequence {mk} on [0, 1] satisfies

S = E(E − I)(−βI − kE−1)mk = −βmk+2 + (β − (k + 2))mk+1 + (k + 1)mk = 0.

This recurrence relation with polynomial coefficients may be solved explicitly using computer
algebra tools (see [34] for an overview of the existing algorithms). Using the maxima computer
algebra system [28], the following explicit formula was obtained:

mk = α

∫ 1

0
xk eβx dx = (−1)kk!

βk

{
c1 + c2

k−1∑
j=0

βj (−1)j−1

(j + 1)!

}
c1 = m0

c2 = βm1 + m0

This example is further continued in example 3.1.

2.2. Piecewise case

Until now we have been considering a function g which satisfies Dg ≡ 0 on a single interval
[a, b]. In particular, we have seen that the sequence of the moments of g satisfies a linear
recurrence relation whose coefficients linearly depend on the coefficients of D. Now we are
going to consider the piecewise case (depicted in figure 1) where g is assumed to consist of
several ‘pieces’ g0, g1, . . ., gK. On each continuity interval �n = [ξn, ξn+1], the nth piece of

g satisfies Dngn ≡ 0, where Dn = ∑Nn

j=0

∑kn

i=0(ai,j,nx
i)∂j . Denote mk,n

def= ∫ ξn+1

ξn
xkgn(x) dx.

Our goal is to find a recurrence relation satisfied by the sequence mk = ∑K
n=0 mk,n.

As we shall see below, this recurrence relation is particularly easy to find explicitly in
the case g ∈ A∗

D
, i.e. Dn = D for n = 0, . . .,K. We shall also discuss the general case where

Dm �= Dn briefly.

8
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a = ξ0 ξ1 ξ2 . . .     ξK−1 ξK ξK+1 = b

0 g0 = 0

g0(x)

1 g1 = 0

g1(x)

K−1 gK−1 = 0

gK−1(x)

K gK = 0

gK(x)

Figure 1. A piecewise D-finite function.

2.2.1. The same operator on each interval. We present two methods for computing the
desired recurrence relation. Then we show that these methods indeed produce the same result.

Theorem 2.10 (Method I). Let g ∈ A∗
D

with Dm = D for 0 � m � K. Then {mk(g)} satisfies(K+1∏
n=0

(E − ξnI)N�D(k, E)

)
mk = 0. (2.11)

Proof. By theorem 2.9, for every n = 0, . . . ,K the sequence {mk,n} satisfies(
EN

ξn,ξn+1
(E) · �D(k, E)

)
mk,n = 0. (2.12)

(2.11) follows by using the fact that the linear factors (E − ξiI) and (E − ξj I) commute. �

It turns out that formula (2.11) may be obtained by considering the piecewise function
g ∈ A∗

D
being annihilated as a distribution on [a, b] by some operator D̂ = D̂(D, {ξn}). We

now derive the explicit expression for D̂.
The general theory of distributions (generalized functions) may be found in [16]. By a

test function we shall mean any f ∈ CN−1([a, b]) (in fact, for our purposes it is sufficient to
consider just the monomials f = xk).

We shall identify the discontinuous function g with the following distribution (here
g−1 ≡ 0 by definition):

g(x) = g̃0 +
K∑

n=1

g̃n(x)H(x − ξn) (2.13a)

g̃n
def= gn − gn−1 (2.13b)

H(x)
def=
{

0 x < 0
1 x � 0.

(2.13c)

The functions g̃n(x) belong to the solution space of D on �n, and thus g̃n(x) ∈ CN−1(�n).
Since pn(x) �= 0 on [a, b], we even have g̃n(x) ∈ CN−1([a, b]).

9
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The derivative of H is the Dirac δ. The distribution δ(x) has the following properties:

〈δ(x − t), f (x)〉 = f (t),

〈δ(j)(x − t), f (x)〉 = (−1)jf (j)(t).

The second equality is valid provided f (x) is j -times differentiable at x = t .
Now let g(x) = c · δ(x − ξ) for c, ξ ∈ R. This distribution is ‘annihilated’ by the

operator D = (x − ξ)I in the sense that 〈Dg, f 〉 = 〈c · (x − ξ)δ(x − ξ), f 〉 = 0 for every
test function f . By linearity, the operator D = ∏K

i=1(x − ξi)I annihilates every g of the form
g = ∑K

i=1 ciδ(x − ξi).

Lemma 2.11. Let g = ∑K
i=1

∑S−1
j=0 cij (x)δ(j)(x − ξi) such that cij (x) is j -times differentiable

at ξi . Then g is annihilated by D = p(x)I, where p(x) = ∏K
i=1(x − ξi)

S .

Proof. For every test function f (x) we have

〈f,Dg〉 = 〈p(x)f (x), g〉 =
K∑

i=1

S−1∑
j=0

〈cij (x)p(x)f (x), δ(j)(x − ξi)〉.

The function r(x) = cij (x)p(x)f (x) has a zero of order S at x = ξi . Therefore, all its
derivatives up to j vanish at ξi and so 〈f,Dg〉 = 0. �

Theorem 2.12. Assume g ∈ A∗
D

as in (2.13), with D of degree N annihilating every piece of
g. Then the entire g is annihilated as a distribution by the operator D̂ = ∏K

i=1(x − ξi)
ND.

Proof. By (2.13) and the fact that Dg̃n ≡ 0 we obtain

Dg = Dg̃0 +
N∑

j=0

pj (x)∂j

{ K∑
i=1

g̃i(x)H(x − ξi)

}

= 0 +
K∑

i=1

N∑
j=0

pj (x)

j∑
k=0

(
j

k

)
∂j−k{g̃i(x)}∂k{H(x − ξi)}

=
K∑

i=1

N∑
j=0

j∑
k=1

pj (x)

(
j

k

)
∂j−k{g̃i(x)}∂k{H(x − ξi)} +

K∑
i=1

H(x − ξi)

N∑
j=0

pj (x)∂j g̃i(x)

=
K∑

i=1

N−1∑
k=0

hik(x)δ(k)(x − ξi) +
K∑

i=1

H(x − ξi)Dg̃i =
K∑

i=1

N−1∑
k=0

hik(x)δ(k)(x − ξi),

where hik(x) is k-times differentiable at ξi . Then apply lemma 2.11. �

Theorem 2.12 will later serve as the basis for recovering the locations of the discontinuities
of g ∈ A∗

D
. The factor

∏
(x − ξi)

N effectively ‘encodes’ the positions of the jumps into the
operator itself. The ‘decoding’ will then simply be to find these ‘extra’ roots, once the
‘enlarged’ operator is reconstructed.

The second form of the recurrence relation now immediately follows from theorem 2.12.

Theorem 2.13 (Method II). The sequence of the moments of g ∈ A∗
D

satisfies the recurrence
relation (

EN
a,b(E) · �D̂(k, E)

)
mk = 0, (2.14)

where D̂ = ∏K
n=1(x − ξn)

ND.

10



Inverse Problems 25 (2009) 105001 D Batenkov

Proof. Theorem 2.9 combined with theorem 2.12. �

Lemma 2.14 (Equivalence of methods I and II). Let q(x) be an arbitrary polynomial. Then

�q(x)D(k, E) = q(E)�D(k, E).

Equivalence of (2.11) and (2.14) then follows from lemma 2.14 by putting
q(x) = ∏K

i=1(x − ξi)
N .

To prove lemma 2.14 we need the following result.

Proposition 2.15. Let p(x) = ∑α
i=0 pix

i, q(x) = ∑β

i=0 qix
i and r(x) = p(x)q(x) =∑α+β

i=0 rix
i . Let E be the shift operator in k and let ĵ be fixed. Then

α+β∑
i=0

ri(i + k)̂j Ei−ĵ = p(E)

β∑
i=0

qi(i + k)̂j Ei−ĵ

Proof. We extend the sequences of the coefficients {pi} and {qi} by zeros as necessary. By
the rule of polynomial multiplication, ri = ∑α

j=0 pjqi−j . Now

α+β∑
i=0

ri(i + k)̂j Ei−ĵ =
α+β∑
i=0

α∑
j=0

pjqi−j (i − j + k + j )̂j Ei−j +̂j+j

=
α∑

j=0

pj Ej

α+β∑
i=0

qi−j ((i − j) + k)̂j E(i−j)+̂j

[i − j → i] =
α∑

j=0

pj Ej

α+β−j∑
i=−j

qi(i + k)̂j Ei−ĵ = p(E)

β∑
i=0

qi(i + k)̂j Ei−ĵ

�

Proof of Lemma 2.14. Recall that �D = ∑
i,j ai,j	

(i,j)(k, E) where 	(i,j)(k, E) =
(−1)j (i + k)j Ei−j ,D = pj (x)∂j and pj (x) = ∑kj

i=0 ai,j x
i . Now let p̂j (x) = q(x)pj (x) =∑

âi,j x
i, then

�q(x)D(k, E) =
N∑

j=0

(−1)j
kj +deg q∑

i=0

âi,j (i + k)j Ei−j

[Proposition 2.15] =
N∑

j=0

(−1)j q(E)

kj∑
i=0

ai,j (i + k)j Ei−j

= q(E)�D(k, E). �

2.2.2. Different operators on each interval. Recall that we want to find a recurrence relation
for the sequence mk = ∑

mk,n, where each subsequence is annihilated by the difference
operator

Sn = ENn

ξn,ξn+1
· �Dn

(k, E).

There exist at least two approaches, both of which involve techniques from the theory of non-
commutative polynomials—the so-called Ore polynomial rings (see [26]). Both differential
and difference operators with polynomial coefficients are members of the appropriate Ore
algebra. The least common left multiple (LCLM) of two polynomials p, q is the unique

11
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polynomial r of minimal degree such that both p and q are right-hand factors of r, i.e.
r = p′p = q ′q for some polynomials p′, q ′. The LCLM may be explicitly found by the
non-commutative version of the polynomial division algorithm. The complete theory may be
found in [26].

Approach I Given the operators Sn such that Snmk,n ≡ 0, the operator S� which
annihilates the sum

∑
n mk,n is given by the least common left multiple of {Sn}.

Approach II Given the operators Dn which annihilate the pieces gn separately, the
operator D† which annihilates every piece simultaneously is the least common left multiple
of {Dn}. Then the annihilating operator for {mk} is S† = EN †

a,b�D†(k, E).

We are not aware of any general procedure by which the coefficients of S† or S� may
be related to the coefficients of each Dn in some tractable manner, unless the operators Dn

commute.

Example 2.3 (Piecewise sinusoids). Let g consist of two sinusoid pieces:
g1(x) = c1 sin(ω1x + φ1) and g2(x) = c2 sin(ω2x + φ2) with break point ξ . The annihilating
operators for g1 and g2 are, respectively, D1 = ∂2 + ω2

1I and D2 = ∂2 + ω2
2I. The operator

D† = (
∂2 + ω2

1I
) · (∂2 + ω2

2I
)

annihilates both pieces simultaneously, therefore (x − ξ)4D†

annihilates the entire g.

3. Moment inversion

We now present our method for moment inversion for piecewise D-finite functions. Recall
that our purpose is to reconstruct the parameters

P def= {{ai,j }, {ξi}, {αi,n}} (3.1)

from the input

I def= {{mk}, N, {kj },K, a, b}. (3.2)

First, we establish explicit connections betweenP and I—the ‘forward mapping’M : P → I.
Then we derive the inverse mapping N = M−1 and provide simple conditions for the
solvability of the resulting inverse systems.

3.1. Forward equations

Recall the polynomials 	(i,j)(k, E) which were defined in (2.7) during the derivation of the
recurrence relation (2.10). Given a multi-index (i, j) we define the ‘shifted’ moment sequence

v
(i,j)

k

def= (
EN

a,b(E) · 	(i,j)(k, E)
)
mk. (3.3)

For each j = 0, . . ., N, let hj (z) be the formal power series

hj (z)
def=

∞∑
k=0

v
(0,j)

k zk.

Finally, for any g(x) let

g
g

j (x)
def= EN

a,b(x)
dj

dxj
g(x)

Ig(z)
def=

∞∑
k=0

mk(g)zk.

Ig(z) is called the moment-generating function of g.

12
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Theorem 3.1. Let g ∈ A∗
D

be annihilated by D (either in the usual sense if K = 0 or as a
distribution if K > 0, in which case D = ∏K

i=1(x − ξi)
ND† with D† annihilating every piece),

where D = ∑N
j=0 pj (x)∂j and pj (x) = ∑kj

i=0 ai,j x
i . Then,

(A) The vector a = (ai,j ) satisfies a linear homogeneous system

Ha =

⎛⎜⎜⎜⎜⎝
v

(0,0)
0 v

(1,0)
0 · · · v

(kN ,N)
0

v
(0,0)
1 v

(1,0)
1 · · · v

(kN ,N)
1

...
...

...
...

v
(0,0)

M̂
v

(1,0)

M̂
· · · v

(kN ,N)

M̂

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝

a0,0

a1,0

...

akN ,N

⎞⎟⎟⎟⎠ = 0 (3.4)

for all M̂ ∈ N.
(B) v

(i,j)

k = mi+k

(
g

g

j (x)
)

for all 0 � j � N, 0 � i � kj and k ∈ N (the moments are taken in
[a, b]). Consequently, hj (z) is the moment-generating function of g

g

j (x).
(C) The functions {1, h0(z), . . ., hN(z)} are polynomially dependent:

q(z) +
N∑

j=0

hj (z)p
∗
j (z) = 0,

where p∗
j (z) = zmax kj pj (z

−1) and q(z) is a polynomial with deg q < max kj .

Proof of A. By theorem 2.13 and (3.3) we have

N∑
j=0

kj∑
i=0

ai,j v
(i,j)

k = 0, k = 0, 1, . . ..

This is exactly (3.4). �

Proposition 3.2. Let p(x) be a polynomial in x. Then for every f (x)

mk(p(x)f (x)) = p(E)mk(f (x)).

Proof. Let p(x) = xr . Then

mk(x
rf (x)) =

∫ b

a

xkxrf (x) dx =
∫ b

a

xk+rf (x) dx = mk+r (f (x)) = Ermk(f (x)).

The proof for an arbitrary polynomial p(x) follows by linearity. �

Proof of B. Fix j � N, i � max kj and define Dij = xi∂j . By (2.5) and (2.6) we have

mk(Dij g) = �Dij
(k, E)mk(g) + εk(Dij , g). (3.5)

By (2.7), we have �Dij
(k, E) = 	(i,j)(k, E). By theorem 2.8, we have EN

a,b(E)εk(Dij , g) = 0.
Finally,

v
(i,j)

k = (
EN

a,b(E) · 	(i,j)(k, E)
)
mk(g) = EN

a,b(E)�Dij
(k, E)mk

[3.5] = EN
a,b(E)mk(Dij g) − EN

a,b(E)εk(Dij , g) = EN
a,b(E)mk(Dij g)

[Proposition 3.2] = mk(E(x)xi∂jg) = mi+k(g
g

j (x)). �

Proof of C. Let k∗ = max kj . We have p∗
j (z) = ∑kj

i=0 ai,j z
k∗−i . Denote the power series

q(z) = −
N∑

j=0

hj (z)p
∗
j (z) =

∞∑
k=0

qkz
k.

13
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An immediate consequence of B is that v
(i ′,j)

k′ = v
(i,j)

k for i ′ + k′ = i + k and all j . Then for
all m � k∗

−qm =
N∑

j=0

kj∑
i=0

ai,j v
(0,j)

m−k∗+i =
N∑

j=0

kj∑
i=0

ai,j v
(i,j)

m−k∗ = 0.

So q(z) is a polynomial of degree at most k∗ − 1. This completes the proof of
theorem 3.1. �

Remark 3.1. H has the structure of the Hankel-striped matrix H = [V0. . .VN ] where each
‘stripe’ is a Hankel matrix

Vj =

⎡⎢⎢⎢⎢⎣
v

(0,j)

0 v
(1,j)

0 · · · v
(kj ,j)

0

v
(0,j)

1 v
(1,j)

1 · · · v
(kj ,j)

1
...

...
...

...

v
(0,j)

M̂
v

(1,j)

M̂
· · · v

(kj ,j)

M̂

⎤⎥⎥⎥⎥⎦ (3.6)

Hankel-striped matrices appear as central objects in contexts such as the Hermite–Padé
approximation (the standard Padé approximation being its special case), minimal realization
problem in control theory and Reed–Solomon codes [7, 20, 23]. In fact, the system of
polynomials {p∗

j (z)} is called the Padé–Hermite form for � = {1, h0(z), . . ., hN(z)}.
Remark 3.2. Moment-generating functions are a powerful tool for the investigation of the
properties of the sequence mk . For instance, the asymptotic behaviour of the general term
may be derived from the analytic properties of Ig(z) [15].

Now suppose the operator D annihilating every piece gn of g ∈ A∗
D

, as well as the jump
points {ξn}, are known. Let {ui}Ni=1 be a basis for the space ND. Then gn(x) = ∑N

i=1 αinui(x).
Applying the moment transform to both sides of the last equation and summing over
n = 0, . . .,K gives

Proposition 3.3. Denote cn
i,k = ∫ ξn+1

ξn
xkui(x) for n = 0, . . .,K. Then ∀M̃ ∈ N:

⎛⎜⎜⎝
c0

1,0 . . . c0
N,0 . . . cKN,0

...
...

...
...

...

c0
1,M̃

. . . c0
N,M̃

. . . cK
N,M̃

⎞⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎝

α1,0

...

αN,0

...

αN,K

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝
m0

m1

...

mM̃

⎞⎟⎟⎟⎠ (3.7)

3.2. The inversion algorithm

The reconstruction algorithm which is based on the results of the previous section is depicted
schematically in figure 2. The solvability of the corresponding systems is discussed in
section 3.3. Note the following.

(a) At the initial stage, the ‘encoding’ of the (yet unknown) jump points takes place. In

practice, this means the ‘enlargement’ of D to D̂
def= ∏K

i=1(x − ξi)
ND. The parameters of

the problem therefore change as follows: N remains the same while kj ← kj + NK—see
(2.14).

14
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Input: {mk}M
k=0, N, {kj}, K

K > 0?

kj ← kj + NK

← K
i=1(x− ξi)N

Yes

Reconstruct

Solve Ha = 0 (3.4)

= a

No

K > 0?

Recover jump points

→ {ξn}, †

Recover particular solution(s)

Find basis for N † . Solve Cα = m (3.7).

Yes

No

Figure 2. The reconstruction algorithm

(b) By theorem 2.12, {ξn} are the K distinct common roots of the polynomials which are
the coefficients of D̂ of multiplicity N . The remaining part of the coefficients define the
operator D† which annihilates every piece of g.

Example 3.1 (Examples 1.1 and 2.2 continued). g(x) = α eβx on [0, 1] is annihilated by
D = ∂ − βI.

Writing down (3.4) with M̂ = 0 yields

[m2 − m1 −(2m1 − m0)]

[−β

1

]
= 0,

which has the solution

β = 2m1 − m0

m1 − m2
.

The constant α is then recovered by

α = m0(g)

m0(eβx)
= βm0

eβ − 1
.

Note that this solution requires the first three moments instead of two as in (1.4).

Additional examples of complete inversion procedures are elaborated in the appendix.
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3.3. Solvability of inverse equations

The constants M̂ and M̃ determine the minimal size of the corresponding linear systems (3.4)
and (3.7) in order for all the solutions of these systems to be also solutions of the original
problem.

Theorem 3.4. If b ∈ NH , then

mk(E(x)(Dbg)(x)) = 0, k = 0, 1, . . . , M̂.

Proof. Denote b = (bij ) and let k � 0. By theorem 3.1, part B, and proposition 3.2, the
product of the (k + 1)st row of H with b is

0 =
N∑

j=0

kj∑
i=0

bij v
(i,j)

k =
N∑

j=0

kj∑
i=0

bijmi+k(g
g

j (x))

=
N∑

j=0

kj∑
i=0

mk(bij x
ig

g

j (x)) = mk

⎛⎝ N∑
j=0

⎛⎝ kj∑
i=0

bij x
i

⎞⎠ g
g

j (x)

⎞⎠
= mk(E(x)(Dbg)(x)). �

If it is possible to estimate how many moments of F = E(x)(Dbg)(x) should vanish in
order to guarantee the identical vanishing of F and therefore also of Dbg for all possible
differential operators of the prescribed complexity (i.e. of given order and given degrees of
its coefficients), then M̂ may be taken to be this number. Then, every solution of (3.4) will
correspond to some annihilating operator. For any specific g and Db, such a finite number
exists because any nonzero piecewise-continuous integrable function has at least some nonzero
moments. However, this number may be arbitrarily large as shown by the next example.

Example 3.2 (Legendre orthogonal polynomials). It is known that every family of orthogonal
polynomials satisfies a differential equation of order N = 2 of the following type:

D = q(x)∂2 + p(x)∂ + λnI, (3.8)

where q, p are fixed polynomials with deg q � 2 and deg p � 1, and λn is a scalar which is
different for each member of the family.

Consider {Ln(x)}—the family of Legendre orthogonal polynomials. The interval
of orthogonality is [a, b] = [−1, 1] and E = (E2 − I)2. Ln is annihilated by
Dn = (1 − x2)∂2 − 2x∂ + λnI. Furthermore, 〈Ln(x), xk〉 = 0 for k � n − 1. The
‘reconstruction problem’ for Ln(x) (assume that it is normalized) is to find the constant
λn from the moments (it is well known that λn = n(n + 1)).

Take an arbitrary vector b = [b00 b11 b02 b22]T so Db = b00I + b11x∂ +
(b02 + b22x

2)∂2. The function E(x)DbLn is a polynomial of degree n + 4, so it is uniquely
determined by its n + 5 moments [27]. By theorem 3.4, this would be the minimal size of the
system (3.4). The entries of the kth row of H are

v
(0,0)
k = mk+4 − 2mk+2 + mk i = 0, j = 0

v
(1,1)
k = −((k + 5)mk+4 − 2(k + 3)mk+2 + (k + 1)mk) i = 1, j = 1

v
(0,2)
k = (k + 4)(k + 3)mk+2 − 2(k + 2)(k + 1)mk + k(k − 1)mk−2 i = 0, j = 2

v
(2,2)
k = (k + 6)(k + 5)mk+4 − 2(k + 4)(k + 3)mk+2 + (k + 2)(k + 1)mk i = 2, j = 2.
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The first n − 5 rows are identically zero because the maximum moment of Ln involved
is mn−1. We are looking for a solution of the form b = [λn −2 1 −1]T . The (n − 4)th
row is

[mn −(n + 1)mn 0 (n + 2)(n + 1)mn]

and that is just enough to reconstruct the operator: mn(λn + 2(n + 1) − (n + 2)(n + 1)) = 0
and thus λn = n(n + 1), as expected. The reason for the original estimate n + 5 not being
sharp is that some of the coefficients of D (in fact, all but one) were known a priori.

Similar argument may be used in order to estimate M̃ . Straightforward computation leads
to

Proposition 3.5. If α = (αin) is a solution of (3.7), then

mk(Gα(x)) = 0, k = 0, 1, . . ., M̃, (3.9)

where

Gα(x)
def= g(x) −

K∑
n=0

N∑
i=1

αinui(x). (3.10)

Every function Gα(x) is a (piecewise) solution of Df ≡ 0. By theorem 2.13, the moments
of Gα(x) satisfy a linear recurrence relation (2.14). Therefore, the maximal number of
moments of Gα(x) �≡ 0 which are allowed to vanish is explicitly bounded by (2.14). For
instance, M̃ may be taken as the length of the recurrence plus the value of the largest positive
integer zero of its leading coefficient.

Example 3.3 (Piecewise-constant functions on [0, 1]). Each piece of g is a constant gi(x) ≡ ci .
The operator D = ∏K

i=1(x − ξi)∂ annihilates the entire g and E(E) = E(E − I).

• First we determine the minimal size of the system (3.4). For every polynomial q(x) of
degree K, the moments of the function fq = (E(x)q(x)∂) g are

mk(fq) =
K∑

i=1

qiξ
k
i , qi = ξi(ξi − 1)q(ξi).

Assume that the ξi’s are pairwise distinct and do not coincide with the endpoints. We claim
that M̂ = K − 1 is sufficient. Indeed, assume that mk(fq) = 0 for k = 0, 1, . . . ,K − 1.
Then

Xq = 0 : X =

⎡⎢⎢⎢⎢⎢⎢⎣
1 1 · · · 1
ξ1 ξ2 · · · ξK
ξ 2

1 ξ 2
2 · · · ξ 2

K
...

...
...

...

ξK−1
1 ξK−1

2 · · · ξK−1
K

⎤⎥⎥⎥⎥⎥⎥⎦ , q =

⎡⎢⎢⎢⎣
q1

q2

...

qK

⎤⎥⎥⎥⎦
The matrix X is a Vandermonde matrix and it is nonsingular because ξi �= ξj for i �= j . It
follows that q = 0 and therefore q(ξi) = 0 for all i. Therefore every solution of (3.4) is a
multiple of

∏K
i=1(x − ξi).

• Now we determine the minimal size of (3.7). The space ND is spanned by piecewise-
constant functions with the jump points ξi . Let α be a solution to (3.7) and let the function
Gα(x) be as in (3.10). This Gα(x) is again a piecewise-constant function with K jump
points ξi . Therefore, the moments of Gα(x) satisfy the recurrence relation (2.14). This
recurrence has nonzero leading coefficient and its length is K + 2. Therefore, vanishing
of the first K + 1 moments of Gα(x) implies Gα(x) ≡ 0 and consequently M̃ = K will
be sufficient. The constants ci are precisely the solution of (3.7).
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4. Stability of inversion in a noisy setting

The presented inversion scheme assumes that the unknown signal g ∈ A∗
D

is clean from noise
and that the moment sequence {mk} is computed with infinite precision. In many applications
this assumption is unrealistic. Therefore, it is practically important to analyse the sensitivity
of the inversion to the noise in the data, both theoretically and numerically. In section 4.1,
we give a theoretical stability estimate for one special case of linear combinations of
Dirac δ-functions. Then we present results of numerical simulations for several test cases
(section 4.2).

4.1. Theoretical stability analysis

The general case of an arbitrary piecewise D-finite function appears to be difficult to analyse
directly. Here, we provide stability estimates for the reconstruction of the model

g(x) =
K∑

i=1

aiδ(x − ξi). (4.1)

We argue that it is crucial to understand the behaviour of the reconstruction in this special
case. Consider a generic g ∈ A∗

D
. Then Dg is a linear combination of δ-functions and

their derivatives (see the proof of theorem 2.12). Thus the model (4.1) may be considered a
‘prototype’ which captures the discontinuous nature of g.

One can prove the following.

Theorem 4.1. Let g be given by (4.1). Assume that the moments mk(g) are known with
accuracy ε. There exists a constant C1 such that the parameters may in principle be recovered
with the following accuracy:

|�ξi | � C1εa
−1
i

|�ai | � C1ε,

where C1 depends only on the geometry of ξ1, . . ., ξK:

C1 ∼
∏
i �=j

|ξi − ξj |−1.

Outline of the proof. Write the Jacobian matrix of M explicitly and use the inverse function
theorem to get the Jacobian of N . This matrix may be factorized as a product of a diagonal
matrix diag{a1, . . ., aK} and a Vandermonde matrix V on the grid ξ1, . . ., ξK. Then C1 may be
taken to be the norm of V −1. �

The above result can be generalized to the case of the model

g(x) =
K∑

i=1

kj∑
j=0

aij δ
(j)(x − ξi).

We plan to present these results in detail separately.
The estimate of theorem 4.1 reflects only the problem conditioning (i.e. the sensitivity of

the map N defined in section 3 with respect to perturbations). Moreover, this estimate is sharp
in the worst-case scenario, since it is based on directly evaluating the norm of the Jacobian.

On the other hand, an accurate analysis of the algorithm itself should involve estimates
for the condition numbers of the matrices H and C (see (3.4) and (3.7), respectively) as well
as the sensitivity of the root finding step (figure 2). Let us briefly discuss these.
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Figure 3. Reconstruction of rational signals f = p/q. (a) The signal with deg p = 2, deg q = 4
corrupted by noise with SNR = 25 dB. Reconstruction MSE is 0.07. (b) The signal with
deg p = 3, deg q = 1 corrupted by noise with SNR = 35 dB. Reconstruction MSE is 0.0006.
The reconstructed signal is visually indistinguishable from the original. (c) Dependence of the
MSE on the degree of the denominator with SNR = 40 dB. (d) Dependence of the MSE on the
SNR with deg p = 2, deg q = 3.

(1) By theorem 3.1 and remark 3.1, solving (3.4) is equivalent to calculating a Hermite–Padé
approximant to � = {1, h0(z), . . . , hN(z)}. Estimates for the condition number of H in
terms of � are available [8]. These estimates may hopefully be understood in terms of
the differential operator D and the function g itself, using the connection provided by
theorem 3.1.

(2) It is known (e.g. [31]) that if the coefficients of a (monic) polynomial are known up to
precision ε, then the error in recovering a root of multiplicity m may be as large as ε

1
m .

(3) There is some freedom in the choice of the basis {ui}Ni=1 for the null space of D

(proposition 3.3). It should be investigated how this choice affects the condition number
of C.

Considering the above, we hope that a stable reconstruction is possible at least for signals
with relatively few and sufficiently separated points of discontinuity, as well as some mild
conditions on the other model parameters.
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Figure 4. Reconstruction of piecewise sinusoids. (a) A sinusoid consisting of four pieces,
corrupted by noise with SNR = 25 dB. Reconstruction MSE = 0.068. (b) Dependence of the MSE
on the SNR in the reconstruction of a two-piece sinusoid. Also plotted are the relative errors in the
estimated location of the jump point and the estimated frequency.

4.2. Numerical results

In order to further justify the hope expressed in the previous section, we have performed
several numerical simulations using a straightforward implementation of the reconstruction
algorithm from section 3 (the implementation details are provided in the appendix).

We have chosen three different models for the unknown signal: a rational function
(no discontinuities), a piecewise sinusoid and a piecewise-polynomial function. In every
simulation, the signal was first sampled on a sufficiently dense grid, then a white Gaussian noise
of specified signal-to-noise ratio (SNR) was added to the samples, and finally the moments
of the noised signal were calculated by trapezoidal numerical integration. To measure the
success of the reconstruction, we calculated both the mean squared error (MSE) and the error
in the relevant model parameters. The results are presented in figures 3, 4 and 5. Note that
the SNR is measured in decibels (dB).

Several test signals were successfully recovered after a moderate amount of noise was
added. Furthermore, an increase in SNR generally leads to improvement in accuracy.
Nevertheless, some degree of instability is present, which is evident from the peaks in
figures 3(d), 4(b) and 5(d).

While for some models, the increase in complexity leads to severe performance
degradation, for other models it is not the case. Compare the growth in the degree of the
rational function on one hand (figure 3(c)), and the increase in the number of jump points for
the piecewise-constant reconstruction on the other hand (figure 5(c)).

5. Discussion

The piecewise D-finite moment inversion problem appears to be far from completely solved.
In the theoretical direction, the solvability conditions need to be further refined. In particular,
we hope that minimality results (‘what is the minimal number of measurements which is
sufficient to recover the model uniquely?’) in the spirit of examples 3.2 and 3.3 concerning the
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Figure 5. Reconstruction of piecewise-polynomials. (a) Piecewise-constant signal with five jumps
corrupted by noise with SNR = 15 dB. Reconstruction MSE is 0.043. The reconstructed signal is
visually indistinguishable from the original. (b) Piecewise-linear signal with three jumps, corrupted
by noise with SNR = 30 dB. Reconstruction MSE is 0.067. (c) Dependence of the MSE on the
number of jumps (K) for a piecewise-constant signal, with SNR = 50 dB. The reconstruction
failed for K = 10. (d) Dependence of the MSE on the SNR for a piecewise-constant signal with
two jumps. (c)+(d) Also plotted is the relative error in the recovered jump location.

reconstruction of additional classes of functions may be obtained using the methods presented
in this paper (section 3.3). The importance of this question is discussed e.g. in [27], where
estimates on the finite moment determinacy of piecewise-algebraic functions are given. In
this context, the role of the moment-generating function is not yet fully understood. Another
open question is the analysis of the case in which the function satisfies different operators on
every continuity interval.

In the numerical direction, the results of section 4 suggest that a ‘naive’ implementation of
the presented algorithm is relatively accurate for simple enough signals corrupted by low noise
levels. We believe that attempts to improve the robustness of the algorithm should proceed in
at least the following directions.

(1) A similar question regarding stability of reconstruction of signals with the finite rate of
innovation is addressed in [24]. We propose to investigate the applicability of that method
to our reconstruction problem.
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(2) The connection of the system (3.4) to Hermite–Padé approximation may hopefully be
exploited to build some kind of sequence of approximants which converge to the true
solution, as more elements of the moment sequence are known. In fact, a similar approach
(with standard Padé approximants) has been used in the ‘noisy trigonometric moment
problem’ [3].

Furthermore, we believe that it is important to understand how the various model parameters
influence the stability of the algorithm. The most general answer in our context would be to
give stability estimates in terms of the differential operator D and the geometry of the jump
points.

On the other hand, the algebraic moments (1.1) are known to be a non-optimal choice for
measurements (see [32]) due to their strong non-orthogonality. As stated in the introduction,
the moment inversion is a ‘prototype’ for some real-world problems such as reconstruction
from Fourier measurements. In fact, it is known that the Fourier coefficients (as well as
coefficients with respect to other orthogonal systems) of many ‘finite-parametric’ signals
satisfy various relations, and this fact has been utilized in numerous schemes for nonlinear
Fourier inversion [2, 4, 5, 9, 12, 22]. The point of view presented in this paper, namely,
the differential operator approach, can hopefully be generalized to include these types of
measurements as well. In this regard, we expect that the methods of holonomic combinatorics
[35] may provide useful insights.
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Appendix. The inversion algorithm—implementation details

We have implemented the inversion algorithm of section 3 in the MATLAB environment [29].
For each of the three types of signals we built a specific inversion routine. All the three
routines have a common base as follows.

• The matrix H is chosen to be square. The solution to the system Ha = 0 is obtained
by taking the highest coefficient of a to be 1 and then performing standard Gaussian
elimination with partial pivoting on the reduced system.

• The root finding step is performed with the pejroot routine of the MULTROOT package
[36, 37], which takes into account the multiplicity structure of the polynomial.

• The calculation of the moments in the matrix C is done via numerical quadrature.

The difference between the routines lies in the construction of H and the computation of the
basis for the null space of D. These are determined by the signal type, as described below.

(1) Rational functions. A rational function f (x) = p(x)

q(x)
is annihilated by the first-order

operator

D = (−pq)∂ + (p′q − pq ′)I.

Therefore, the matrix H consists of two ‘stripes’ V0 and V1 (the structure of the matrices Vi

is given by (3.6)). If deg p(x) = r and deg q(x) = s, then the degrees of the coefficients
of D are k0 = r + s − 1 and k1 = r + s. Subsequently, V0 is (k0 + k1 + 2) × (k0 + 1) and
V1 is (k0 + k1 + 2) × (k1 + 1). After D is reconstructed (without explicitly recovering p
and q), a solution u to Du ≡ 0 is obtained by numerically solving (using the ode45 solver)
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the initial value problem {Du(x) ≡ 0, u(a) = 1, x = a . . . b}. Then the final solution is
obtained as

f̃ (x) =
∫ b

a
u(x) dx

m0
u(x).

(2) Piecewise sinusoids. Let g(x) consist of K + 1 pieces of the form

gn(x) = An sin(ωx + ϕn).

The annihilating operator for each piece is D = ∂2 + ω2I; therefore, the entire g is
annihilated by

D̂ = {(x − ξ1)
2 · . . . · (x − ξK)2}(∂2 + ω2I).

So H = [V0 V2], where both V0 and V2 are 2(2K + 1) × (2K + 1). From the operator
reconstruction step we obtain D̃ = p1(x)∂2 + p0(x)I. The jump points are taken to be the
arithmetic means of the corresponding roots of p0 and p1. Because of the normalization
performed in the operator recovery step, the frequency ω′ may be taken to be the square
root of the highest coefficient of p0. The reconstruction is considered to be unsuccessful
if at least one root fails to lie inside the interval [a, b].

The basis for the null space of D is chosen to be u1 = sin(ω′x) and u2 = cos(ω′x).
(3) Piecewise polynomials. Let g consist of K + 1 polynomial pieces gn, where deg gn = d .

The annihilating operator for every piece is D = ∂d+1, and therefore g is annihilated by

D̂ = {(x − ξ1)
d+1 · . . . · (x − ξK)d+1}∂d+1.

Consequently, H = Vd+1 is a K(d + 1) × K(d + 1) Hankel matrix. Operator
reconstruction step gives D̃ = p(x)∂d+1, and the jump locations are the roots of p(x),
each with multiplicity d + 1. The reconstruction is considered to be unsuccessful if at
least one root fails to lie inside the interval [a, b].

The basis for the null space of D is always chosen to be {1, x, . . ., xd}.
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