
O penCV is an open-source,
cross-platform library for
real-time computer vision.

Originally developed
by Intel, the library will use Intel’s
Integrated Performance Primitives,
if it is found on the system. It is very
well-documented with a full reference
manual, many examples and tutorials,
and a book (which is also a good
introduction to computer vision).
Interfaces for C, C++, and Python are
also available in OpenCV.

Example applications of the OpenCV
library include human-computer
interaction; object identification,
segmentation and recognition; face
recognition; gesture recognition;
motion tracking, ego motion, motion
understanding; structure from motion
(SFM); stereo and multi-camera
calibration and depth computation; and
mobile robotics.

In this tutorial, we will learn how
to do real-time face detection using
a webcam. We will utilize a machine-
learning object detection algorithm
known as the Viola-Jones detector. It’s
a fast classification mechanism using
Haar-like wavelet features. OpenCV
ships with a very good “classifier file”
for faces, but one can also train the
classifier to recognize any kind of
objects.

Instructions
First, download the latest OpenCV
release for your platform from
http://opencv.willowgarage.com and
install it.

Next, copy the attached program to
a file named facedetect.py. You can also
download it from http://XRDS.acm.org.

In the downloaded source
archive, locate the classifier file
data/haarcascades/haarcascade_
frontalface_alt_tree.xml and replace the
placeholder in the code with this original
location.

Make sure that the Python

interpreter knows the location for the
OpenCV Python bindings. In Linux, it
should be set automatically. In Windows,
set the environment variable

set pythonpath = <opencvdir>\
Python2.6\Lib\site-package.

Now, connect your webcam and run
the program: python facedetect.py

To exit, press Esc. Have fun!

Improvements
Once an object is detected, we can
start tracking it. OpenCV has an
implementation for CamShift tracking
algorithm. (See the example on http://
XRDS.acm.org.)

Add detection of the eyes, mouth,
and so on. (OpenCV ships with
corresponding classifiers.) You can
recognize emotions! See the video: www.
youtube.com/watch?v=V7UdYzCMKvw.

If you replace the face classifier with
hands classifier, and add tracking, you
can now recognize gestures! 	

		 —Dmitry Batenkov

X R D S • S U M M E R 2 0 1 0 • V o l . 1 6 • N o .450

Hello World

Real-Time Detection with Webcam
by Dmitry Batenkov

hello world

Resources
Object identification links
Viola-Jones algorithm
http://www.face-rec.org/algorithms/
Boosting-Ensemble/16981346.pdf

Haar training tutorial
http://note.sonots.com/SciSoftware/
haartraining.html

Haar cascades repository
http://alereimondo.no-ip.org/
OpenCV/34

HCI projects using opencv
HandVu
Gesture recognition
www.movesinstitute.org/~kolsch/
HandVu/HandVu.html

EHCI Head tracking
http://code.google.com/p/ehci

PyEyes Eyes tracking
http://eclecti.cc/olpc/pyeyes-xeyes-in-
python-with-face-tracking

CCV/touchlib Multi-touch library
http://nuigroup.com

other HCI/cv toolkits
TUIO Common API for tangible
multitouch surfaces
www.tuio.org/?software (list of
implementations)

Trackmate Do-it-yourself tangible
tracking system
http://trackmate.media.mit.edu

Sphinx Speech recognition toolkit
www.speech.cs.cmu.edu/sphinx/
tutorial.html

VXL versatile computer vision
libraries
http://vxl.sourceforge.net

Integrating Vision Toolkit
http://ivt.sourceforge.net

“In this tutorial,
we will learn how
to do real-time face
detection using a
webcam. We will
utilize a machine-
learning object
detection algorithm
known as the Viola-
Jones detector.”

X R D S • S U M M E R 2 0 1 0 • V o l . 1 6 • N o .4 51

import sys

import cv

storage=cv.CreateMemStorage(0)

image _ scale=1.3

haar _ scale=1.2

min _ neighbors=1

haar _ flags=0

def detect_and_draw(img):

	 # allocate temporary images

	 gray=cv.CreateImage((img.width,img.height),8,1)

	�� small _ img=cv.CreateImage((cv.Round(img.width/

	 image _ scale),

		 cv.Round(img.height/image _ scale)), 8, 1)

	 # convert color input image to grayscale

	 cv.CvtColor(img, gray, cv.CV _ BGR2GRAY)

	 # scale input image for faster processing

	 cv.Resize(gray, small _ img, cv.CV _ INTER _ NN)

	 cv.EqualizeHist(small _ img, small _ img)

	 # start detection

	 if(cascade):

		 faces=cv.HaarDetectObjects(small _ img,

		 cascade, storage,

			 haar _ scale, min _ neighbors, haar _ flags)

	 if faces:

		 for (x,y,w,h),n in faces:

		 # the input to cvHaarDetectObjects was resized, so scale the

		 # bounding box of each face and convert it to two CvPoints

		 pt1=(int(x*image _ scale),int(y*image _ scale))

		 pt2=(int((x+w)*image _ scale),

		 int((y+h)*image _ scale))

		 # Draw the rectangle on the image

		 cv.Rectangle(img,pt1,pt2,cv.CV _ RGB(255,0,0),3,8,0)

		 cv.ShowImage(“result”, img)

if _ _ name _ _ ==‘ _ _ main _ _ ’:

	 # Load the Haar cascade

	 cascade _ name=“./haarcascade _ frontalface

	 alt _ tree.xml”

	 cascade=cv.Load(cascade _ name)

	 # Start capturing.Can change index if more than one
	 camera present

	 capture=cv.CaptureFromCAM(0)

	 # Create the output window

	 cv.NamedWindow(“result”,1)

	 frame _ copy=None

	 while True:

		 frame=cv.QueryFrame(capture)

		 # make a copy of the captured frame

		 if not frame _ copy:

			 frame _ copy=cv.CreateImage((frame.

			 width,frame.height),

			 cv.IPL _ DEPTH _ 8U, frame.nChannels)

			 cv.Copy(frame, frame _ copy)

		 detect _ and _ draw(frame _ copy)

		 c=cv.WaitKey(7)

		 if c==27: # Escape pressed

				 break

© 2010 ACM 1528-4972/10/0600 $10.00

