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Reconstruction of Planar Domains
from Partial Integral Measurements

D. Batenkov, V. Golubyatnikov, and Y. Yomdin

Abstract. We consider the problem of reconstruction of planar domains from
their moments. Specifically, we consider domains with boundary which can be
represented by a union of a finite number of pieces whose graphs are solutions
of a linear differential equation with polynomial coefficients. This includes do-
mains with piecewise-algebraic and, in particular, piecewise-polynomial bound-
aries. Our approach is based on the one-dimensional reconstruction method of
[5] and a kind of “separation of variables” which reduces the planar problem
to two one-dimensional problems, one of them parametric. Several explicit
examples of reconstruction are given.

Another main topic of the paper concerns “invisible sets” for various types
of incomplete moment measurements. We suggest a certain point of view which
stresses remarkable similarity between several apparently unrelated problems.
In particular, we discuss zero quadrature domains (invisible for harmonic poly-

nomials), invisibility for powers of a given polynomial, and invisibility for com-
plex moments (Wermer’s theorem and further developments). The common
property we would like to stress is a “rigidity” and symmetry of the invisible
objects.

1. Introduction

In this paper, we continue our study of nonlinear problems of reconstruction of
multidimensional objects from the incomplete collection of integral measurements.
The paper has two parts, closely related but different in their goals. In the first
part, we present a method of reconstruction of planar domains of a certain special
class from finite collections of moments. In the second part, we discuss the structure
of sets and functions “invisible” for a certain collection of moment measurements.

In more detail, the object we would like to reconstruct is a 2-dimensional finite
domainG ⊂ R2 which we assume to belong to a certain finite-dimensional familyGλ

specified by a finite number of discrete and continuous parameters λ. Specifically,
we shall assume that the boundary of G is a union of a finite number of pieces whose
graphs are solutions of a linear differential equation with polynomial coefficients.
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52 D. BATENKOV, V. GOLUBYATNIKOV, AND Y. YOMDIN

The measurements are represented by finite collections of the moments mα,β

of the characteristic function χG(x, y) of the domain G

(1.1) mα,β =

∫∫
R2

χG(x, y) · xαyβdxdy.

Our main problem is to provide an explicit (and potentially efficient) reconstruction
method, and, in particular, to estimate a minimal possible set of these moments
sufficient for unique reconstruction of the domain G.

Similar inverse problems have been intensively studied, including reconstruction
from their moments of polygons, of quadrature domains, of certain “dynamic” semi-
algebraic sets; see [6,7,17,20,33] and references therein. In a more general context
the problem of domain reconstruction from its moments appears as a part of broad
field of inverse problems in Potential Theory (see, for example, [36]). Rather similar
questions arise in reconstruction from tomography measurements ([18,19,31]).

Our approach is based on the one-dimensional reconstruction method of [5]
applicable to piecewise continuous functions satisfying on each continuity interval
a linear differential equation with polynomial coefficients. Then we use a kind of
“separation of variables” which reduces the planar problem to two one-dimensional
problems, one of them parametric.

We expect that a reconstruction method for piecewise-smooth functions given
in [9] can be extended in a similar way also to planar and higher dimensional
piecewise-smooth functions.

The second part of the present paper is devoted to “invisible sets” for various
types of incomplete measurements. Here we do not provide new results (besides
several examples), but rather suggest a certain point of view which stresses remark-
able similarity between several apparently unrelated “moment vanishing” problems.
In particular, we discuss zero quadrature domains (invisible for harmonic polyno-
mials), invisibility for polynomials annihilating other partial differential operators,
invisibility for powers of a given polynomial, and invisibility for complex moments
(Wermer’s theorem and further developments). In all these cases, we stress a com-
mon property of “rigidity” and symmetry of the invisible objects.

2. One-dimensional case

The reconstruction problem in dimension one has been settled in fairly satisfac-
tory way for many important finite-dimensional families of functions. This includes
linear combinations of shifts of known functions, signals with “finite rate of innova-
tion”, piecewise D-finite functions which we use below, piecewise-smooth functions,
and many other cases (see [5,8,9,14,35] and references therein).

2.1. Piecewise D-finite reconstruction. Let g(x) be a function with a
support [a, b] ⊂ R

1, satisfying the following condition: there exists a finite set
of K + 2 points a = ξ0 < ξ1 < . . . < ξK+1 = b, such that on each segment
[ξn, ξn+1], n = 0, 1, . . .K, the function g(x) is continuous and satisfies there a lin-
ear differential equation

(2.1) Dng(x) =
N∑
j=0

pn,j(x)

(
djg

dxj

)
= 0
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RECONSTRUCTION OF PLANAR DOMAINS 53

with polynomial coefficients pn,j(x) =
∑kn,j

i=0 an,i,jx
i, pN,j �= 0 on [a, b]. At the

points ξn the function g(x) may have jumps. Such functions are described by a
finite collection of discrete and continuous parameters, and are called piecewise D-
finite. Without loss of generality (at least theoretically), we can assume that all the
operatorsDn = D are the same. In particular, piecewise-algebraic, and, specifically,
piecewise-polynomial functions belong to this class. In the last case, the differential

operator is D = dN+1

dxN+1 , where N is the maximal degree of the polynomial pieces
of g.

It was shown in [5] that the collection of “discrete” parameters K, N , {kn,j},
together with a sufficiently large collection of the moments

mα =

∫ b

a

g(x) · xαdx, α = 0, 1, 2, . . . , μ

determine uniquely any D-finite function g(x) with all the points ξ0, . . . ξK+1 of its
possible discontinuity, as well as the coefficients of the differential operator D.

For piecewise-polynomial functions, the number μ of the moments required for
reconstruction depends only on the discrete data: the number of jumps K and on the
maximal degree N of the pieces. It is shown in [5] that in the piecewise-polynomial
case

μ = μ(K, N) = max {2(N + 1)K − 2, (K+ 1)(N + 1)}.
A similar, but more complicated, expression for μ can be written in the piecewise-

algebraic case. However, for general D-finite functions, with respect to a general
second (and higher) order differential operators D, the number μ may depend also
on specific coefficients of D.

Let us give a very simple example of this latter phenomenon. Let Ln(x) be the

n-th Legendre polynomial, defined as Ln(x) =
1

2nn!
dn

dxn [(x
2−1)n]. Legendre polyno-

mials are pairwise orthogonal on [−1, 1] and they satisfy the second order Legendre
differential equation d

dx [(1− x2) d
dxLn(x)] +n(n+1)Ln(x) = 0. Since Lj(x), j ≤ n,

form a basis of the space of all polynomials of degree n, we conclude that Ln(x)

is orthogonal to 1, x, x2, . . . , xn−1. Hence the moments mj(Ln) =
∫ 1

−1
xjLn(x)dx

vanish for j = 0, 1, . . . , n−1. We conclude that a D-finite function Ln(x) on [−1, 1]
cannot be reconstructed from less than n+1 its moments. So μ above depends not
only on the order and degree of the Legendre operator, but also on a specific value
of the parameter n in it.

Notice that the leading coefficient of the Legendre equation vanishes at both
the endpoints −1, 1 of the interval.

The reconstruction procedure described in [5] consists of solving certain linear
and non-linear algebraic equations whose coefficients are expressed through the
moments mα. These equations have a very specific structure which we illustrate in
the next section with the simplest example of the classical “Prony system”. The last
step requires also finding a basis of the solution space of the differential equation
Dg = 0.

We shall apply below this reconstruction procedure, and refer to it as Proce-
dure 1.

2.2. Prony system. The Prony system appears as we try to solve a very

simple version of the shifts reconstruction problem. Consider F (x) =
∑N

j=1 ajδ(x−
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54 D. BATENKOV, V. GOLUBYATNIKOV, AND Y. YOMDIN

xi). We use as measurements the polynomial moments

mn =

∫ ∞

−∞
F (x)xndx.

After substituting F into this integral we get mn =
∫ ∑N

j=1 aiδ(x − xj)x
ndx =∑N

j=1 ajx
n
j . Considering ai and xi as unknowns, we obtain equations

(2.2) mn =

N∑
j=1

ajx
n
j , n = 0, 1 . . . .

This infinite set of equations is called the Prony system. It can be traced at least to
R. de Prony (1795, [32]) and it is used in a wide variety of theoretical and applied
fields. See, for example, [8,35] and references therein for a very partial list, as well
as for a sketch of one of the solution methods. This method requires 2N equations
from (2.2). It allows first to find the number of nonzero coefficients aj . Then aj
and xj are found via solving first a Hankel-type linear system of equations with
coefficients formed by the moments ml, interpreting the solution as the coefficients
of a certain polynomial, and finding all the roots of this polynomial.

We shall apply below this Prony solution procedure in our specific situation,
and refer to it as Procedure 2.

3. Main result

We assume that the domain G ⊂ R2 to be reconstructed has a “D-finite bound-
ary”. More accurately, we have the following definition.

Definition 3.1. A compact domain G ⊂ R2 is called D-finite if the boundary
∂G is a union of κ segments Sj with the following property: there exists a linear
differential operator D of the form (2.1) and with the leading coefficient not van-
ishing for x in the projection of G, such that each Sj is the graph of a function
y = ψj(x) satisfying Dψj = 0.

In particular, if each Sj is a graph of an algebraic function y = ψj(x) and all
the branches of these algebraic functions are regular over the projection of G, then
G is D-finite. The simplest but still important example of D-finite domain is when
all ψj are polynomials.

We do not restrict the topological type of G — it may have “holes”.

Before we formulate the main result, let us introduce some notations. Let [a, b]
be the projection of G onto the x-axis, and let a = ξ0 < ξ1 < . . . < ξK+1 = b be
all the projections of the endpoints of the segments Sj of the boundary ∂G (see
Figure 1). Certainly, K ≤ κ, while the maximal number of the intersection points
of ∂G with vertical lines is at most κ− 1.

Write the linear differential operator D in Definition 3.1 as

(3.1) Dg(x) =

N∑
j=0

pj(x)
djg

dxj
(x),

where pj(x) =
∑kj

i=0 ai,jx
i.
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RECONSTRUCTION OF PLANAR DOMAINS 55

Figure 1. Schematic representation of the domain G.

Theorem 3.1. Any D-finite domain with the discrete parameters κ,N, kj can
be uniquely reconstructed from a collection of double moments

(3.2) mα,β =

∫∫
R2

χG(x, y) · xαyβdxdy, 0 ≤ α ≤ M(κ,N, kj), 0 ≤ β ≤ 2(κ− 1).

The reconstruction procedure requires solving certain linear and non-linear alge-
braic equations whose coefficients are expressed through the moments mα,β , and
solving equation Du = 0 with specific numerical coefficients found in previous
stages.

Proof. Denote by Δj the interval [ξj , ξj+1], j = 0, . . . ,K. Over each Δj the

domain G is a union of sj ≤ 1
2 (κ − 1) strips φ

j,l
≤ y ≤ φj,l, , l = 1, . . . , sj , (see

Figure 1). We have

(3.3) mα,β =

∫ b

a

xαΨβ(x)dx =
K∑

j=0

∫
Δj

xαΨβ,j(x)dx,

where for x ∈ Δj

(3.4) Ψβ,j(x) =

∫ φj,sj
(x)

φ
j,1

(x)

yβχG(x, y)dy =
1

β + 1

sj∑
l=1

[φ
β+1

j,l (x)− φβ+1

j,l
(x)].

The first conclusion is that for each β ≥ 0 the function Ψβ is piecewise D-finite.
Indeed, on each interval Δj , j = 0, . . . ,K, Ψβ = Ψβ,j is a linear combination of

the β-th powers of the functions φ
j,l
, φj,l, l = 1, . . . , sj which, by the assumption

on G, satisfy Dψ = 0. Hence Ψβ (i.e., each Ψβ,j) satisfies another linear differential
equation with polynomial coefficients DβΨβ = 0. The operator Dβ depends only
on D, in particular, its order and degree depend only on the order and degree of
D, and it has no singularities on [a, b], if D possesses this property.

We can find one-dimensional moments of Ψβ via (3.3):

(3.5) mα(Ψβ) =

∫ b

a

xαΨβ(x)dx = mα,β .
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56 D. BATENKOV, V. GOLUBYATNIKOV, AND Y. YOMDIN

Now we apply the one-dimensional Procedure 1 from Section 2.1, and reconstruct
Ψβ from the moments mα,β , α = 0, 1, . . . , μβ ≤ M(κ,N, kj) for each β = 0, 1, . . . ,
2(κ− 1). The reconstruction procedure requires solving of certain linear and non-
linear algebraic equations whose coefficients are expressed through the moments
mα,β , and solving differential equationsDβu = 0 with specific numerical coefficients
found in previous stages. Ultimately, Ψβ(x) = Ψβ,j(x) is represented on each
interval Δj as a linear combination of the basis solutions of Dβu = 0.

Next, for each fixed x ∈ Δj we consider equalities (3.4) for different β as a

system of equations for the unknowns φ
j,l
(x), φj,l(x), with the known by now right

hand side Ψβ,j(x). This system of equations is a special case of the Prony system,
as described in the previous section. Here the amplitudes aj are known to be ±1.
(3.4) does not give the first equation in the Prony system, but it is just the sum of
the amplitudes aj , and we know it to be zero. So finally, we apply Procedure 2 and

solve system (3.4), reconstructing the functions φ
j,l
(x), φj,l(x) for each x ∈ Δj . Now

the functions φ
j,l
(x), φj,l(x) for j = 0, . . . ,K, l = 1, . . . , sj , completely determine

the domain G. Theorem 3.1 is proved. �

As it was mentioned above, for the case of algebraic boundary segments explicit
bounds can be given on the number of the moments required for reconstruction. We
provide these bounds in the case of polynomial boundaries, where the expressions
are relatively simple and pretty sharp.

Theorem 3.2. Under the assumptions of Theorem 3.1, let us assume addition-
ally that each boundary segment Sj is a graph of a polynomial y = ψj(x) of degree
at most d. Then the domain G can be uniquely reconstructed from a collection of
double moments

{mα,β : 0 ≤ β ≤ 2(κ− 1), 0 ≤ α ≤ M(N, κ, β)}

where

M(d, κ, β) = max {2(βN + 1)κ− 2, (κ+ 1)(βN + 1)}.

Proof. The functions Ψβ constructed in the proof of Theorem 3.1 are now
piecewise-polynomials of degree at most βN , and the conclusion follows from the
corresponding result of [5] given in Section 2 above. �

4. Examples of Explicit Reconstruction

The main object considered in this section is a compact plane domain bounded
by a part of an elliptic curve

y2 = ax3 + bx2 + cx+ d ≡ f(x). (4.1)

We assume that the roots x1 < x2, and x3 of the equation f(x) = 0 are real,
and that the function f(x) is positive on the interval (x1, x2). Hence, the equation
y2 = ax3 + bx2 + cx+ d defines a compact domain G ⊂ R2.

Consider a finite collection of corresponding moments

mα,β =

∫
G

xα · yβ dx dy.
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RECONSTRUCTION OF PLANAR DOMAINS 57

Since the domain G is symmetric with respect to the axis Ox, we have mα,β = 0
for odd values of β, and

mα,2β =
2

2β + 1

∫ x2

x1

xα · (ax3 + bx2 + cx+ d)β+1/2dx. (4.2)

In order to simplify the formulae below, we introduce one more notation:

Mα,2β =
2β + 1

2
·mα,2β ,

and we call it “Moment”. So, the equation (4.2) implies that

Mα,2β+2 = a ·Mα+3,2β + b ·Mα+2,2β + c ·Mα+1,2β + d ·Mα,2β . (4.3)

Our task is to determine the curve (4.1) from a finite (possibly minimal) col-
lection of the Moments Mα,2β .

Let us calculate the Moments Mα,2β for small values of the indices:

M0,2 = a ·M3,0 + b ·M2,0 + c ·M1,0 + d ·M0,0; (4.4)
M1,2 = a ·M4,0 + b ·M3,0 + c ·M2,0 + d ·M1,0.

Hence, one can obtain a system of relations with unknown coefficients a, b, c, d, and
to verify compatibility of the “data” {Mα,β}.

Here are two more methods of construction of similar relations:
a). Consider the Moment

Mα,2 =

∫ x2

x1

xα · (ax3 + bx2 + cx+ d)3/2dx.

Since f(x1) = f(x2) = 0, integrating by parts:
du = xαdx, v = (ax3 + bx2 + cx+ d)3/2, shows that:

Mα,2 = − 3

2(α+ 1)
· (3a ·Mα+3,0 + 2b ·Mα+2,0 + c ·Mα+1,0).

In the cases α = 1 and α = 0, we get

−4

3
·M1,2 = 3a ·M4,0 + 2b ·M3,0 + c ·M2,0. (4.5)

and

−2

3
·M0,2 = 3a ·M3,0 + 2b ·M2,0 + c ·M1,0, (4.6)

b). Similarly, since f(x1) = f(x2) = 0, a simple change of the variables implies∫ x2

x1

(3ax2 + 2bx+ c) · (ax3 + 2bx2 + cx+ d)dx = 0,

and hence,
0 = 3a ·M2,0 + 2b ·M1,0 + c ·M0,0. (4.7)

Consider now the system of three linear equations (4.5), (4.6), (4.7) with re-
spect to the unknowns a, b, c. Let L2,f [x1, x2] be the Hilbert space composed by
corresponding functions defined on the segment [x1, x2], endowed with scalar prod-
uct:

〈F (x), H(x)〉 :=
∫ x2

x1

F (x) ·H(x)
√
f(x)dx.

In this notation, M4,0 = 〈x2, x2〉, M3,0 = 〈x2, x1〉, M1,0 = 〈x1, x0〉,
M2,0 = 〈x2, x0〉 = 〈x1, x1〉, and M0,0 = 〈x0, x0〉.
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So, the determinant of the system (4.5), (4.6), (4.7) equals

6 ·

⎛
⎝ M4,0 M3,0 M2,0

M3,0 M2,0 M1,0

M2,0 M1,0 M0,0

⎞
⎠ = 6 ·

⎛
⎝ 〈x2, x2〉 〈x2, x1〉 〈x2, x0〉

〈x2, x1〉 〈x1, x1〉 〈x1, x0〉
〈x2, x0〉 〈x1, x0〉 〈x0, x0〉

⎞
⎠ ,

and this coincides (up to the factor 6) with the determinant of the Gram matrix of
system of three polynomial functions x2, x1, and x0, which are linearly independent
in the space L2,f [x1, x2]. It is well known that this determinant is strictly positive;
thus, the system of linear equations (4.6), (4.7), (4.8) has a unique solution a, b, c.
Then the coefficient d is uniquely determined from the equation (4.4), since we
assume that M0,0 > 0.

So, we have proved the following:

Theorem 4.1. ([7]) In order to reconstruct an elliptic curve (4.1), it is suffi-
cient to know 7 moments m0,0, m1,0, m2,0, m3,0, m4,0, m0,2 è m1,2.

Note that such an “overdeterminancy” allows to obtain corresponding (nonlin-
ear) relations between the moments listed above.

Similar calculations illustrate Theorems 3.1 and 3.2 in a very simple case: (K =
1, N = 2), see [6]. Here we reconstructed a triangle T ⊂ R

2 with non-vertical edges
from a given set of moments

m0,0, m1,0, m2,0, m3,0, m0,1, m1,1.

Cf. also [20].

5. Invisible sets and functions

Let Pn denote the space of polynomials P (x1, . . . , xn) and let a collection S ⊂
Pn be fixed. We call a function f on R

n S-invisible if
∫
Rn P (x)f(x)dx = 0 for

each P ∈ S ⊂ Pn. A domain G ⊂ Rn is S-invisible together with its characteristic
function. With obvious modifications this definition is extended to subsets of higher
codimension and to distributions.

In this section we discuss some examples of invisible sets and functions, coming
from different fields. Besides Propositions 5.1 and 5.4 below, we do not provide new
results, but rather an initial attempt to find similarity between several apparently
unrelated problems. The common property we would like to stress is a remarkable
“rigidity” and symmetry of the invisible objects.

5.1. S ⊂ Pn annihilating a fixed differential operator. For a fixed partial
differential operator D in n variables it is natural to consider S ⊂ Pn consisting of
all P ∈ S with DP = 0.

5.1.1. Null quadrature domains. Put D = Δ to be the Laplacian, and denote
Sh the corresponding set of harmonic polynomials Sh = {P ∈ Pn, ΔP = 0}.

A domain G ⊂ Rn is called a null quadrature domain if
∫
G
hdx = 0 for all

harmonic and integrable functions h. Taking h = P ∈ Sh we get a closely related
notion, so null quadrature domains are essentially all the Sh-invisible sets. This
class of domains has been intensively studied, and it has wide applications, in
particular, in the investigation of the Newtonian potential, and of the filtration
flow of incompressible fluid (see [24,25,36] and references therein).

Null quadrature domains include half-spaces, exterior of ellipsoids, exterior of
strips, exterior of elliptic paraboloids and cylinders over domains of these types. It is
known that in R2 any null quadrature domain belongs to one of the categories above
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RECONSTRUCTION OF PLANAR DOMAINS 59

([34]). A complete description of all null quadrature domains in higher dimensions
has remained an open problem. A significant progress has been recently achieved
(see [24,25] and references therein).

5.1.2. Sets invisible for solutions of the wave equation. Here we consider a
somewhat artificial example which however illustrates the situation for another

type of the operator D. We put n = 2 and consider D = W = ∂2

∂x∂y . In this

case SW consists of all the polynomials P of the form P (x, y) = Q(x) + R(y).
A function f(x, y) is SW -invisible if and only if

∫
R2 f(x, y)(Q(x) + R(y)) = 0 for

any polynomials Q(x), R(y). In turn, this is equivalent to the vanishing of all the
moments∫

R2 x
kf(x, y) dx dy =

∫
xkdx

∫
f(x, y)dy and∫

R2 y
lf(x, y) dx dy =

∫
yldy

∫
f(x, y)dx.

This is equivalent to the identical vanishing of the functions
F (x) =

∫
f(x, y)dy = 0 and H(y) =

∫
f(x, y)dx = 0.

So we have the following result:

Proposition 5.1. f(x, y) is SW -invisible if and only if F (x) =
∫
f(x, y)dy =

0 for each x and H(y) =
∫
f(x, y)dx = 0 for each y. In particular, this is true for

functions given by finite or infinite sums of the products φ(x)ψ(y) with
∫
φ(x)dx =

0,
∫
ψ(y)dy = 0.

5.1.3. Vanishing conjectures of W. Zhao. In a series of recent papers ([38,39]
and references therein), W. Zhao has studied a number of vanishing conjectures
which relate polynomials annihilating certain differential operators, invisible sets,
and the well known Jacobian conjecture ([4]).

For a given D, specifically, for D = Δ being the Laplacian, the polynomials P
have been considered satisfying the following condition: DlP l = 0, l = 1, . . . . This
condition turned out to be closely related to the classical and generalized orthogonal
polynomials. The following conjecture has been shown in [38] to be equivalent to
the Jacobian conjecture:

Conjecture A. If for a homogeneous polynomial P of degree four ΔlP l =
0, l = 1, 2, . . . , then ΔlP l+1 = 0, l 
 1.

It was shown in [38] that the vanishing of DlP l is equivalent to P being Hessian

nilpotent – i.e., the Hessian matrix H(P ) = ( ∂2P
∂xi∂xj

) being nilpotent. In [39]

Conjecture A is closely related to the following Conjecture B:

Conjecture B. For a compact domain G ⊂ R
n, for a positive measure μ

on G, and for a polynomial P if all the moments
∫
G
P kdμ vanish, then for any

polynomial q the moments
∫
P kq dμ vanish for k 
 1.

In our language, this conjecture can be reformulated as follows: if (G,μ) is
invisible for all the powers of P then it is “eventually invisible” for the sequence of
polynomials P kq. Below we discuss this conjecture in somewhat more detail.

5.2. Sets invisible by powers of a fixed polynomial. In this section, we
discuss the vanishing problem for the moments

∫
G
P kdμ, i.e., the conditions of

invisibility of (G,μ) for all the powers of P . Besides its appearance in Zhao’s study
of the Jacobian conjecture as above, this question is related to a wide spectrum of
problems in Analysis, Algebra, Differential Equations, and Signal Processing. We
briefly mention below only a very few of these remarkable connections.
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5.2.1. One-dimensional case. In one dimension, the question is to describe all
the univariate polynomials (Laurent polynomials, etc) P (x) and q(x) for which

(5.1) mk =

∫ b

a

P k(x)q(x)dx = 0, k = 0, 1 . . . .

This question appears as a key step in understanding the classical Center-Focus
problem of the Qualitative Theory of ODE’s in the case of Abel’s equation (see
[10,11] and references therein).

Even in this simplest case, the answer (only recently obtained in [27, 29]) is
far from being straightforward. In particular, it involves subtle properties of the
polynomial composition algebra. To state the result, we need the “composition
condition” (CC) defined initially in [3] and further investigated in [10–12,27–30]
and in many other publications.

Definition 5.1. Differentiable functions f(x) and g(x) on [a, b] ⊂ R are said
to satisfy a composition condition (CC) on [a, b] if there exists differentiable W (x)

defined on [a, b] with W (a) = W (b), and two differentiable functions F̃ and G̃ such
that F (x) =

∫ x

a
f(x)dx and G(x) =

∫ x

a
g(x)dx satisfy

(5.2) F (x) = F̃ (W (x)), G(x) = G̃(W (x)), x ∈ [a, b].

If f, g are polynomials and they satisfy (CC), then W is necessarily also a
polynomial.

The composition condition implies vanishing of all the moments mk (change of
variables). Necessary and sufficient condition for vanishing of mk for p, q polyno-
mials is given by the following theorem:

Theorem 5.1. ([27,29]) The moments mk in (5.1) vanish for k = 0, 1, . . . (i.e.,
[a, b] is invisible for P kq) if and only if q(x) = q1(x) + · · ·+ ql(x), with l = 1, 2 or
3, where q1, . . . , ql satisfy composition condition (CC) with P (x) on [a, b], possibly
with different right factors W1, . . . ,Wl.

Analysis of the case of rational functions, and, in particular, of Laurent polyno-
mials (directly related to the Poincaré Center-Focus problem for plane polynomial
vector-fields) turns out to be significantly more difficult (see [28]).

If we allow P, q above to be only piecewise-polynomial (piecewise-rational),
then another form of composition condition becomes relevant: a “tree composition
condition” (TCC) where W maps [a, b] not into R, but into a certain topological
tree. Still under some restrictions a result similar to Theorem 5.1 remains valid (see
[12]). We hope that these recent developments can provide a better understanding
of invisible D-finite domains, as above.

5.2.2. Some examples in higher dimensions. We start with a definition of a
multidimensional composition condition (MCC) given in [16], which directly gener-
alizes Definition 5.1. (MCC) provides a natural sufficient condition for the moments
vanishing. However, as we shall see below, in n > 1 variables this condition is much
stronger than the vanishing of the “one-sided” momentsmk =

∫
Ω
F k(x)g(x)dx, k =

0, 1, . . . .. In fact, it is exactly relevant to the vanishing of the n-fold moments

(5.3) mα =

∫
Ω

Fα1
1 (x) · ... · Fαn

n (x)g(x)dx,

for all the nonnegative multi-indices α = (α1, . . . , αn).
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Let Ω be an open relatively compact domain of Rn with a smooth boundary ∂Ω.
First we need for maps W : Ω → Rn a definition generalizing to higher dimensions
the requirement W (a) = W (b) in dimension one.

Definition 5.2. ([16]) A continuous mapping W : Ω → Rn is said to “flatten
the boundary” ∂Ω of Ω if the topological index of W |∂Ω is zero with respect to each
point w ∈ Rn \W (∂Ω).

Informally, W flattens the boundary ∂Ω of Ω if W (∂Ω) “does not have interior”
in Rn. In particular, this is true if W |∂Ω can be factorized through a contractible
(n − 1)-dimensional space X. The simplest example is when X is a point, so W
mapping ∂Ω to a point always flattens the boundary. We have the following simple
fact:

Proposition 5.2. ([16]) A mapping W : Ω → Rn flattens the boundary ∂Ω if
and only if the integral

∫
Ω
H(W (x))dW (x) vanishes for any function H(W ).

Now let F1, . . . , Fs be differentiable functions on Ω and let μ be a measure on
Ω given by its density g(x): dμ(x) = g(x)dx.

Definition 5.3. ([16]) Functions Fl, l = 1, . . . , s and a measure μ on Ω sat-
isfy multi-dimensional composition condition (MCC) if there exists a differentiable

mapping W : Ω → Rn, flattening the boundary ∂Ω, functions F̃l(w), l = 1, . . . , s,

and g̃(w) on Rn such that Fl(x) = F̃l(W (x)), l = 1, . . . , s, and dμ(x) = g(x)dx =
g̃(W (x))dW.

The following simple proposition (implied directly by Proposition 5.1) shows
that (MCC) is sufficient for moment vanishing:

Proposition 5.3. If a function F and a measure μ on Ω satisfy (MCC), then
all the moments mk =

∫
Ω
F k(x)g(x)dx, k = 0, 1, . . . , vanish.

Consider the following example: let Ω ⊂ Rn be defined by P (x) ≤ 1 for a
certain polynomial P (x), x = (x1, . . . , xn) ∈ Rn. For each j = 1, . . . , n, define Sj

to be a collection of polynomials Sj = {Qn(P ) ∂P
∂xj

} with Q an arbitrary univariate

polynomial.

Proposition 5.4. For each j = 1, . . . , n, Ω, Q(P ), dμ = ∂P
∂xj

dx satisfy

(MCC), so the domain Ω is invisible for Sj .

Proof. Define W : Ω → Rn by W (x1, . . . , xn) = (y1, . . . , yn), with yi =
xi, i �= j, yj = P (x1, . . . , xn). W maps the boundary ∂Ω into the hyperplane

{yj = 1} ⊂ Rn, so it flattens ∂Ω. Now, Q(P ) = Q̃(W ), where Q̃(y1, . . . , yn) =
Q(yj), and

dμ =
∂P

∂xj
dx = dx1 · · · dxj−1 · dP · dxj+1 · · · dxn = dW.

�

Let us now describe a situation where (MCC) is a necessary and sufficient
condition for invisibility. Consider double moments of the form

(5.4) mk,l =

∫
Ω

P k(x, y)Ql(x, y)r(x, y)dxdy, k, l = 0, 1, . . . , Ω ⊂ R
2.
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We shall assume that P in the domain of consideration satisfies ∂P
∂x �= 0 and consider

Ω of the form a ≤ P (x, y) ≤ b, c ≤ y ≤ d. The functions P,Q, r in (5.4) are assumed
to be real analytic, and Q is assumed to have a simple critical value on each level
curve of P inside Ω.

Theorem 5.2. ([16]) Under the above assumptions, all the momentsmk,l, k, l =
0, 1, . . . , vanish if and only if Ω, P,Q, rdx satisfy (MCC).

So the domain Ω as above is S-invisible for S consisting of all the products
P kQlr if and only if Ω, P,Q, rdx satisfy (MCC).

5.2.3. Mathieu conjecture and Laurent polynomials. Zhao’s Conjecture B above
has been motivated, in particular, by the following conjecture of O. Mathieu ([26]),
closely related to many important questions in Representation Theory: let M be
a compact Lie group. Denote F (M) the set of M -finite functions on M (i.e.,
polynomials in all the characters on M) and let μ be the Haar measure on M .

Conjecture B. If for some f(x) ∈ F (M)

(5.5)

∫
M

fk(x)dμ(x) = 0, k = 1, 2, . . .

then for any g(x) ∈ F (M) we have
∫
M

fk(x)g(x)dμ(x) = 0, k 
 1.

This conjecture is known to imply the Jacobian conjecture ([26]). In our lan-
guage, it states that if M is invisible for fk, it is eventually invisible for fkg with
any M -finite function g.

Conjecture C has been verified in [15] for the Abelian M , i.e., for M being the
n-dimensional torus Tn. In this case, M -finite functions are Laurent polynomials in
z = (z1, . . . , zn), zi ∈ C, |zi| = 1. In fact, the following result has been established
in [15]:

Theorem 5.3. Let f(z1, . . . , zn) be a Laurent polynomial. Then the constant
term of fk vanishes for k = 1, 2, . . . if and only if the convex hull of the support of
f does not contain zero.

Here the support of f is the set of multi-indices of all the monomials in f with
nonzero coefficients. Theorem 5.3 immediately implies Conjecture C since under
its conditions the support of fk eventually gets out of any compact set on Zn, in
particular, out of the support of g.

Recently a rather accurate description of moment vanishing conditions for one-
dimensional rational functions and, specifically, for Laurent polynomials has been
obtained in [28]. In particular, an extension of the result of Duistermaat and van
der Kallen ([15], Theorem 2.1 above) obtained in [28] provides such conditions:

Theorem 5.4. ([28, Theorem 6.1]). Let L(z) andm(z) be Laurent polynomials
such that the coefficient of the term 1

z in m(z) is distinct from zero. Assume that∫
S1 L

k(z)m(z)dz = 0, k 
 1. Then L(z) is either a polynomial with zero constant

term in z, or a polynomial with zero constant term in 1
z .

As was explained above, this property implies that
∫
S1 L

k(z)h(z)dz = 0, k 
 1
for any Laurent polynomial h(z). In particular, we get∫

S1

Lk(z)g(z)m(z)dz = 0, k 
 1
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for any Laurent polynomial g(z). Therefore Zhao’s Conjecture A holds for S1 and
the measure dμ(z) = m(z)dz.

In [30] under a stronger assumption of vanishing of the moments starting from
the initial indices, we get the same conclusion assuming that only a “horizontal
strip” of the moments vanish.

5.3. Complex moments. Problems of reconstruction of sets and functions
from their complex moments, and, in particular, vanishing conditions for complex
moments form an important field of investigation in Several Complex Variables, in
Inverse Problems in PDE’s and in related fields. We give here only a few examples
illustrating connections with our setting.

5.3.1. Wermer’s theorem and later developments. The classical theorem ofWer-
mer ([37]) gives conditions for vanishing of all complex moments

∫
γ
xiyjdx for a

closed curve γ ⊂ C2: this happens if and only if γ bounds a compact complex
one-chain. See [13,22,23,37] and references therein for an accurate statement and
further developments. In our terms γ is invisible for all complex moments if and
only if it bounds a compact complex one-chain.

The theorem of Dolbeault-Henkin ([13]) gives a remarkable extension of Wer-
mer’s condition to the case of curves γ bounding a compact complex one-chain
in the projective space. In particular, in such case the moment generating func-
tion satisfies a non-linear Burgers-type partial differential equation. This last fact
can be reinterpreted as an invisibility of γ for certain combinations of the complex
moments.

Let’s assume now that γ ⊂ C2 is an image of a not necessarily closed curve
σ ⊂ C under a rational mapping (P,Q) : σ → C

2. In this case, a more accurate
form of Wermer’s theorem can be obtained:

Theorem 5.5. ([28, Theorem 5.2]) The moments mi,j =
∫
γ
xiyjdx vanish for

i, j 
 1 if and only if there exist rational functions P̃ , Q̃,W such that P (z) =

P̃ (W (z)), Q(z) = Q̃(W (z)), the curve σ̄ = W (σ) ⊂ C is closed, and all the poles of

P̃ , Q̃ lie on one side of the curve σ̄.
In particular, if the moments mi,j vanish for i, j 
 1, they in fact vanish for

all i, j > 0.

In our terms, if the curve γ = (P,Q)(σ) is eventually invisible for the complex

moments mi,j then it is closed, it is an image under P̃ , Q̃ of the closed curve σ ⊂ C,

and γ bounds the compact complex one-chain (P̃ , Q̃)(G) where G ⊂ C is the domain

bounded by σ and free of poles of P̃ , Q̃.
5.3.2. Complex moments of planar domains. This problem has been intensively

studied, in particular, in relation with the filtration flow of incompressible fluid, and
with the inverse problem of two-dimensional Potential Theory (see [24,25,36] and
references therein). In particular, in [36] one can find a discussion of the non-
uniqueness of reconstruction.

For reconstruction of polygonal domains see [17,20]. In general, an important
class of quadrature domains (see [2,21] and references therein) provides a natural
framework for a study of the “finite dimensional” reconstruction problem, as well
as its possible non-uniqueness, in particular, the invisibility phenomenon.
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6. Conclusions

The results of the present paper leave open some important questions:

1. We have insisted on a requirement that the singular points of the differen-
tial operator D be outside the projection of the domain to be reconstructed. This
requirement excludes some important classes of domains. In particular, it prevents
reconstruction of general semi-algebraic domains G on the plane. Indeed, typically
the projection of G to the x-axis will have singularities on the boundary ∂G. These
singularities will be necessarily also singularities of the differential operator D an-
nihilating the corresponding algebraic functions. The construction of [5] allows for
an adaptation to singular situations: just, in the last step we have to use the bases
of “singular bounded solutions” of D = 0. See, for example, [1].

2. An important parameter entering the procedure of reconstruction of a D-
finite function f is the maximal number μ of its initial moments that can vanish,
unless all the moments vanish identically (see an example in Section 2.1 above).
Recently we have shown that this number depends only on the combinatorial data
in case where singular points of D differ from the jump-points of f . If some of the
singularities of D are the jump-points, we expect an explicit bound on μ through
the size of the coefficients of D.

3. Robustness estimates. A “quantitative version” of the question of bounding
of the number μ is to bound all the moments of f through its first μ moments (“mo-
ments domination”). We expect this problem to be a central one for the robustness
estimates of the reconstruction procedure. Indeed, moments domination implies
directly a bound on the norm of f itself through its first μ moments. This question
is also directly related to the analysis of periodic solutions of Abel’s equation ([11]).
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