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Abstract

We consider the problem of “algebraic reconstruction” of linear combi-
nations of shifts of several known signals f1, . . . , fk from the Fourier sam-
ples. Following [5], for each j = 1, . . . , k we choose sampling set Sj to be a
subset of the common set of zeroes of the Fourier transforms F(f`), ` 6= j,
on which F(fj) 6= 0. It was shown in [5] that in this way the reconstruction
system is “decoupled” into k separate systems, each including only one of
the signals fj . The resulting systems are of a “generalized Prony” form.

However, the sampling sets as above may be non-uniform/not “dense
enough” to allow for a unique reconstruction of the shifts and amplitudes.
In the present paper we study uniqueness and robustness of non-uniform
Fourier sampling of signals as above, investigating sampling of exponential
polynomials with purely imaginary exponents. As the main tool we apply
a well-known result in Harmonic Analysis: the Turán-Nazarov inequality
([16]), and its generalization to discrete sets, obtained in [11]. We illustrate
our general approach with examples, and provide some simulation results.
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1 Introduction

In this paper we investigate robustness of Fourier reconstruction of signals of
the following a priori known form:

F (x) =
k∑
j=1

qj∑
q=1

ajqfj(x− xjq), (1.1)

with ajq ∈ C, xjq ∈ R. We assume that the signals f1, . . . , fk : R→ R are known
(in particular, their Fourier transforms F(fj) are known), while ajq, xjq are the
unknown signal parameters, which we want to find from Fourier samples of
F . In this paper we restrict ourselves to one-dimensional case. A presentation
of the Fourier Decoupling method in several variables, as well as some initial
uniqueness results, can be found in [23, 5]. On the other hand, we explicitly
assume here that k ≥ 2. So the usual methods which allow one to solve this
problem “in closed form” in the case of shifts of a single function (see [10, 4, 23])
are not directly applicable. Still, as it was shown in [5], in many cases an
explicit reconstruction from a relatively small collection of Fourier samples of
F is possible. Practical importance of signals as above is well recognized in the
literature: for some discussions and similar settings see, e.g. [10, 12, 20].

We follow a general line of the “Algebraic Sampling” approach (see [10, 22, 6] and
references therein), i.e. we reconstruct the values of the unknown parameters,
solving a system of non-linear equations, imposed by the measurements. The
equations in this system appear as we equate the “symbolic” expressions of the
Fourier samples, obtained from (1.1), to their actual measured values.

Our specific strategy, as suggested in [23, 5], is as follows: we choose a sampling
set Sj ⊂ R, j = 1, . . . , k, in a special way, in order to “decouple” the reconstruc-
tion system, and to reduce it to k separate systems, each including only one of
the signals fj . To achieve this goal we take Sj to be a subset of the sets Wj of
common zeroes of the Fourier transforms F(f`), ` 6= j. It was shown in [5] that
the decoupled systems turn out to be exactly the same as those which appear
in the fitting of exponential polynomials on sets Sj (systems (2.2) in Section 2
below).

If the points sj`, ` = 1, 2, . . . , form an arithmetic progression, the reconstruc-
tion systems (2.2) are very closely related to the standard Prony system (see,
for instance, [7] and discussion therein). However, the sampling sets Sj , being
subsets of the sets Wj of zeroes of the Fourier transforms F(f`), ` 6= j, are
completely defined by the original signals f`, and cannot be altered in order to
make sampling more stable. These sets usually are non-uniform, therefore the
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standard methods for robust solution of Prony systems cannot be applied. Even
if Sj forms an arithmetic progression, it may turn out to be “insufficiently dense”
to allow a robust reconstruction of the shifts and amplitudes (see an example
in Section 3 below). Because of these reasons, we restrict ourselves to only one
solution method for system (2.2) - that of the least squares fitting, mainly be-
cause of its relative insensitivity to the specific geometry of the sampling set.
Accordingly, we do not consider in this paper other approaches, which can be
more efficient in certain specific circumstances. Let us only mention that non-
uniform sampling is an active area of research, see e.g. [1, 15] and references
therein.

The main goal of the present paper is to study uniqueness and robustness of the
Fourier decoupling method. We define a “metric span” ω(S) of sampling sets S,
which is a simple geometric quantity, taking into account both the geometry of
S, as well as the maximal shifts allowed in the signal F (which are the maximal
frequencies of the exponential polynomials appearing in the Fourier transform
of F ). Our main results - Theorem 2.1 and Corollary 2.1 below - provide, in
terms of the metric span ω a “density-like” geometric condition on the common
sets Wj of zeroes of the Fourier transforms F(f`), ` 6= j, which, in the case
of no noise, guarantees uniqueness of the least square reconstruction via the
decoupled systems. In the noisy case Theorem 2.1 provides an upper bound for
the maximal error of the least square reconstruction. To prove these results we
study non-uniform sampling of exponential polynomials, via the Turán-Nazarov
inequality ([16], see also [17]), and its generalization to discrete sets, obtained
recently in [11].

Let us stress, that the decoupling method of [23, 5] in dimension one can “gener-
ically” be applied only to the shifts of at most two different signals. Indeed, for
three or more signals the sampling sets Sj are the intersections of at least two
different discrete sets (the sets of zeroes of the Fourier transforms F(f`), ` 6= j),
so “generically” Sj are empty. However, in many important “non-generic” sit-
uations of k > 2 one-dimensional signals the resulting sampling sets are dense
enough for a robust reconstruction. Accordingly, our main result - Theorem 2.1
below - is stated for an arbitrary k.

The paper is organized as follows: in Section 2 the method of Fourier decoupling
of [23, 5] is presented in some detail, next we define the metric span ω and give
our main results. In Section 3 one specific example is considered in detail,
illustrating, in particular, the importance of the frequency bound in the general
results of Section2. In Section 4 we study uniqueness and robustness of non-
uniform sampling of exponential polynomials. Finally, in Section 5 some results
of numerical simulations are presented.
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2 Robustness of Fourier Decoupling

We consider signals of the form (1.1):

F (x) =
k∑
j=1

qj∑
q=1

ajqfj(x− xjq), ajq ∈ C, xjq ∈ R.

Here fj are known, while ajq, xjq are the unknown signal parameters, which we
want to find from Fourier samples F(F )(s) of F at certain sample points s ∈ R.
Let F(fj) be the (known) Fourier transforms of fj .

For F of the form (1.1) and for any s ∈ R we have for the sample of the Fourier
transform F(F ) at s

F(F )(s) =

k∑
j=1

qj∑
q=1

ajqe
−2πisxjqF(fj)(s). (2.1)

In the case k = 1 we could divide the equation (2.1) by F(f1)(s) and obtain
directly a Prony-like equation. However, for k ≥ 2 this transformation usually
is not applicable. Instead, in [5] we “decouple” equations (2.1) with respect to
the signals f1, . . . , fk using the freedom in the choice of the sample set S. Let

Z` =
{
x ∈ R, F(f`)(x) = 0

}
denote the set of zeroes of the Fourier transform F(f`). For each j = 1, . . . , k
we take the sampling set Sj to be a subset of the set

Wj = Wj(f1, . . . , fk) = (
⋂
`6=j

Z`) \ Zj

of common zeroes of the Fourier transforms F(f`), ` 6= j, but not of F(fj). For
such Sj all the summands in (2.1) vanish, besides those with the index j. Hence
we obtain:

Proposition 2.1. ([5]) Let for each j = 1, . . . , k the sampling set Sj satisfy

Sj = {sj1, . . . , sjmj} ⊂Wj .

Then for each j the corresponding system of equations (2.1) on the sample set
Sj takes the form

qj∑
q=1

ajqe
−2πixjqsj` = cj`, ` = 1, 2, . . . , sj` ∈ Sj , (2.2)
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where cj` = cj`(F ) = F(F )(sj`)/F(fj)(sj`).

These decoupled systems are exactly the same as the fitting systems for expo-
nential polynomials Hj(s) =

∑qj
q=1 ajqe

−2πixjqs on sets Sj . So various methods
of exponential fitting can be applied (see, for example, [13, 19, 20, 24] and refer-
ences therein.) As it was mentioned above, the main problem is that the sample
sets Wj may be non-uniform, and/or not sufficiently dense to provide a robust
fitting. Indeed, the zeroes sets Z` of the Fourier transforms F(f`) may be any
closed subsets G` of R: it is enough to take F` to be smooth rapidly decreasing
functions on R with zeroes exactly on G`, and to define the signals f` as the
inverse Fourier transforms of F`. In particular, as a typical situation, Z` may
be arbitrary finite sets or discrete sequences of real points.

The main results of this paper provide a simple “density” condition on the sets
Wj(f1, . . . , fk) as above, which guarantees a robust least square reconstruction
of the signal F as in (1.1). We need some definitions:

Let S be a bounded subset of R, and let I = [0, R(S)] be the minimal interval
containing S. Let λ ∈ R+ be fixed. We put M = M(N,λ,R(S)) = N2 − 1 +

bλR(S)
π c, where for a real A, bAc denotes the integer part of A.

Definition 2.1. For N ∈ N, λ ∈ R+, the (N,λ)-metric span of S is defined as

ωN,λ(S) = max {0, sup
ε>0

ε[M(ε, S)−M(N,λ,R(S))]},

where M(ε, S) is the ε-covering number of S, i.e. the minimal number of ε-
intervals covering S ∩ I.

Definition 2.2. For each j = 1, . . . , k the maximal frequency ηj of the j-th
equation in the decoupled system (2.1) is defined by

ηj = max q=1,...,qj2π|xjq|.

The minimal gap σj of the j-th equation in (2.1) is defined by

σj = min 1≤p<q≤qj2π|xjq − xjp|.

Now let an interval Ij = [0, Rj ] be fixed for each j = 1, . . . , k, such that Rj be a
point in Wj . We take the sampling sets Sj of the form Sj = Wj ∩ Ij , so Ij is the
minimal interval of the form [0, R] containing Sj , and R(Sj) = Rj . In this paper
we shall consider only such sampling sets Sj . This restriction is not essential,
but it significantly simplifies the presentation.
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Definition 2.3. For each j = 1, . . . , k the minimal divisor κj = κj(Sj) of the
j-th equation in the decoupled system (2.1) on Sj is defined by

κj = min s∈Sj |F(fj)(s)|.

The sample gap ρj of the j-th equation in (2.1) on Ij is defined by

ρj =
3Rjσj

2πq2
j (qj + 1)

for ηjRj ≤ πqj , and ρj =
2σj

ηjqj(qj + 1)
otherwise.

Theorem 2.1. Assume that for each j = 1, . . . , k we have ωj := ω2qj ,ηj (Sj , Rj) >
0. Then the parameters ajq, xjq, q = 1, . . . , qj , j = 1, . . . , k of the signal F as in
(1.1) can be uniquely reconstructed via the least square solution of the equations
(2.2) on the sample sets Sj, assuming that the measured samples of F(F )(s) at
all the sample points are exact.

In the case of noisy measurements, with the maximal error of the sample F(F )(sj`)
for sj` ∈ Sj being at most δj (sufficiently small), we have the following bounds
for the reconstruction errors ∆ajq, ∆xjq of ajq, xjq:

∆ajq ≤
2

κj
·
(

632Rj
ρjωj

)2qj

· δj , (2.3)

∆xjq ≤
2

|ajq|κj
·
(

632Rj
ρjωj

)2qj

· δj . (2.4)

Proof: This theorem follows directly from Theorem 4.3 below, which estimates
the accuracy of the least square sampling of exponential polynomials with purely
imaginary exponents on a given sampling set S. The only adaptation we have
to make is that the right hand sides cj` of the equations (2.1) are given by
cj` = cj`(F ) = F(F )(sj`)/F(fj)(sj`), and hence the Fourier sampling error is
magnified by 1

F(fj)(sj`)
. Consequently, the minimal divisor κj = κj(Sj) of the

j-th equation in (2.2) on Sj appears in the denominator of (2.3) and (2.4). �

As a corollary we show that if the Fourier zeroes sets Wj are “sufficiently dense”
then the decoupling approach provides a robust reconstruction of the signal F .
The notion of density we introduce below is a very restricted one. Much more
accurate definition, involving not only the asymptotic behavior of Wj ∩ [0, R]
as R tends to infinity, but also its finite geometry, can be given. We plan
to present these results separately. Notice also a direct connection with the
classical Sampling Theory, in particular, with Beurling theorems of [9, 14]. See
also [15, 18] and references therein.
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Definition 2.4. Let S be a discrete subset of R+. The “central density” D(S)

of S is defined as D(S) = lim supR→∞
|S∩[0,R]|

R .

Corollary 2.1. If for j = 1, . . . , k we have D(Wj) >
ηj
π then the decoupling

procedure on appropriate sampling sets Sj ⊂Wj provides a robust reconstruction
of the signal F .

Proof: If D(Wj) > πηj then for arbitrarily big Rj we have |Wj ∩ [0, Rj ]| >
M(2qj , ηj , Rj), so taking sufficiently small ε > 0 we conclude that the span
ω2qj ,ηj (Sj , Rj) is strictly positive. Application of Theorem 2.1 completes the
proof. �

3 An example

Some examples of Fourier decoupling have been presented in [23, 5]. In the
present paper we consider one of these examples in more detail, stressing the
question of robust solvability of the resulting decoupled systems. As everywhere
in this paper, we restrict ourselves to the case of one-dimensional signals. Some
initial examples in dimension two can be found in [23, 5].

Let f1 be the characteristic function of the interval [−1, 1], while we take f2(x) =
δ(x− 1) + δ(x+ 1). So we consider signals of the form

F (x) =

N∑
q=1

[a1qf1(x− x1q) + a2qf2(x− x2q)]. (3.1)

We allow here the same number N of shifts for each of the two signals f1 and
f2. Easy computations show that

F(f1)(s) =

√
2

π

sin s

s

and

F(f2)(s) =

√
2

π
cos s.

So the zeros of the Fourier transform of f1 are the points πn, n ∈ Z \ {0} and
those of f2 are the points (1

2 +n)π, n ∈ Z. These sets do not intersect, so we have
W1 = {πn}, and W2 = {(1

2 + n)π}, and we can take as S1, S2 any appropriate
subsets of these sets. Notice that the central density of W1,W2, according to
Definition 2.4, is 1

π . By Corollary 2.1, if both the maximal frequencies η1, η2 are
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strictly smaller than 1 then the decoupling procedure on appropriate sampling
sets Sj ⊂Wj , j = 1, 2, provides a robust reconstruction of the signal F . Let us
show that this condition on the frequencies η1, η2 is sharp.

The decoupled systems, given by (2.2) above, take the form

N∑
q=1

a1qe
−2( 1

2
+n)π2ix1q =

N∑
q=1

αqe
iφqn = c1n, n ∈ Z, (3.2)

N∑
q=1

a2qe
−2nπ2ix2q =

N∑
q=1

βqe
iψqn = c2n, n ∈ Z, (3.3)

where

αq = a1qe
−iπ2x1q , φq = −2π2x1q, βq = a2q, ψq = −2π2x2q,

c1n = F(F )((1
2 + n)π)/F(f1)((1

2 + n)π), c2n = F(F )(nπ)/F(f2)(nπ).

Now we put in the equations (3.2), (3.3)

α1 = 1
2i , α2 = − 1

2i , αq = 0 for q = 3, . . . , N , φ1 = π, φ2 = −π,

β1 = 1
2i , β2 = − 1

2i , βq = 0 for q = 3, . . . , N , ψ1 = π, ψ2 = −π.

This corresponds to the following shifts and amplitudes in the signal F :

x11 = − 1
2π , x12 = 1

2π , a11 = − i
2 a12 = i

2 , and thus η1 = 1.

x21 = − 1
2π , x22 = 1

2π , a21 = −1
2 a22 = 1

2 , η2 = 1.

For this specific signal F the exponential polynomials (3.2), (3.3) are both equal
to sin(πs), so they both vanish identically at all the sampling points s = n ∈ Z.
Thus, allowing η1 = η2 = 1 we cannot reconstruct uniquely our signals from the
samples on the sets W1,W2, no matter how many sampling points we take.

On the other hand, put η1 = η2 = η < 1. Let us take as Sm1 (respectively, Sm2 )
the set of points of the form (1

2 + n)π (respectively, nπ) for n = 0, . . . ,m. We
have R(Sm1 ) = (1

2 +m)π, R(Sm2 ) = mπ. The number of the sample points in each
case is m+ 1. So in computing ω2N,η,mπ(Sm2 ) we have M = 4N2 − 1 + bηmππ c ∼
4N2 + ηm− 1. So we have ωN,λ,mπ(Sm2 ) ∼ supε>0 ε[M(ε, Sm2 )− 4N2 + 1− ηm].
Substituting here ε < π tending to π, we get M(ε, Sm2 ) = m + 1, so ω(Sm2 ) ∼
[(1− η)m−N2 + 2]π. Essentially the same expression we get for ω(Sm1 ). So the

metric spans of Sm1 and Sm2 are positive for m > 4N2−1
1−η . Applying Theorem 2.1
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we conclude that for such m the least square sampling on the sets Sm1 , S
m
2 , is

well posed, and get explicit estimates for its accuracy. It would be very desirable
to check the sharpness of this conclusion. Our numerical simulations, presented
below, provide an initial step in this direction.

4 Sampling of Exponential Polynomials

The decoupling method of [23, 5], presented in Section 2 above, reduces the
Fourier reconstruction problem for signals of the form (1.1) to a system of de-
coupled equations (2.2), which are, for each j = 1, . . . , k, the sampling equations
for exponential polynomials of the form Hj(s) =

∑qj
q=1 ajqe

−2πixjqs on sampling
sets Sj . So from now on we deal with sampling of exponential polynomials,
not returning any more to the original problem of the Fourier reconstruction of
linear combinations of shifts of several signals.

4.1 Problem definition and main assumptions

We study robustness of sampling of exponential polynomials on the real line.
Let

H(s) =
N∑
j=1

aje
λjs, aj , λj ∈ C, s ∈ R, (4.1)

be an exponential polynomial of degree N . We consider the following problem.

Given a sampling set S ⊂ R, can an exponential polynomial H of degree N be
reconstructed (i.e. its coefficients aj , λj be recovered) from its known values on
S? If so, how robust can this reconstruction procedure be with respect to noise
in the data?

Let us now elaborate some assumptions we keep below.

1. In this paper we deal with the case of only purely imaginary exponents
λj = ıφj , φj ∈ R. This assumption, which is satisfied in the case of Fourier
reconstruction of the linear combinations of shifts of several signals, i.e. for
the fitting problem (2.2) above, strongly simplifies the presentation. We
plan to describe the general case of arbitrary complex exponents separately.
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2. We restrict ourselves to the least square reconstruction method, and do
not consider other possible reconstruction schemes.

3. In the noisy setting, we investigate the case of sufficiently small noise levels
(for a more detailed explanation of this assumption see Theorem 4.2 below,
and [3, 7, 25, 8]).

As it was shown above, in order to ensure well-posedness of the (even noiseless)
reconstruction problem, a certain “density” of the sampling set S with respect
to the frequency set {φ1, . . . , φN} must be assumed. Accordingly, we assume an
explicit upper bound λ on the frequencies φj and incorporate this bound into
the definition of the metric span of the sampling sets (compare Definition 2.1
above). We shall also assume a lower bound on the minimal distance between
the frequencies: |φj − φi| ≥ ∆. Without this assumption we cannot bound the
accuracy of the reconstruction of the amplitudes aj : indeed, as the exponents λj
of the exponential polynomial H(s) as in (4.1) collide, while the amplitudes aj
tend to infinity in a pattern of divided finite differences, H(s) remains bounded
on any finite interval (see [25, 8]). Accordingly, we shall always assume that for
certain fixed λ > 0,∆ > 0 we have

max {φ1, . . . , φN} ≤ λ, min i<j |φj − φi| ≥ ∆. (4.2)

The inequalities (4.2) will serve also as the constraints in our least square fitting
procedure.

4.2 Reconstruction by least squares

Let there be given the sampling set S = {s1, . . . , sn} of size n and the noisy
samples of some unknown exponential polynomial H of degree N :

hk = H(sk) + δk, k = 1, . . . , n.

According to our assumptions, the noise satisfies

|δk| < δ,

where δ is assumed to be sufficiently small. Let the exponential polynomial

H̃(s) =

N∑
j=1

ãje
λ̃js,
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with ãj ∈ C, λ̃j = iφ̃j , φ̃j ∈ R, provide the least square fitting of the samples
hk, under the constraints (4.2). That is,

(
ãj , φ̃j

)
= arg min |φ̃j |6λ, |φ̃i−φ̃j |≥∆

n∑
k=1

∣∣ N∑
j=1

ãje
λ̃jsk − hk

∣∣2

At this stage we do not assume that H̃(s) is uniquely defined by the sampling
data. Our goal is to estimate the deviations |aj − ãj | and |φj − φ̃j | as function
of ∆, N, n, λ, S and δ. The approach is as follows:

1. First we estimate the difference |H− H̃| at every point s ∈ S, via a simple
comparison of the least square deviations for H and H̃.

2. Then we estimate |H − H̃| on a certain interval I, with S ⊂ I, using
discrete version of Turan-Nazarov inequality. At this stage a major role is
played by the metric span of S.

3. Now we choose inside the interval I a certain arithmetic progression of
points S̄ = {s0, 2s0, . . . , (2N − 1)s0}. The reconstruction problem on S̄ is
reduced to the standard Prony system. The right hand side of this Prony
system, i.e. the values of H̃ on S̄, would deviate from those of H not more
than allowed by the estimate of the previous step. Then, the deviations
of the reconstructed parameters ãj , φ̃j from the original ones can finally
be estimated by the Lipschitz constant of the inverse Prony mapping, as
presented in [7] (see Theorem 4.2 below). An appropriate choice of s0 is
possible if we assume (as we do) that the exponents φj do not collide.

The rest of this section is organized as follows. The discrete Turán-Nazarov
inequality is presented in Subsection 4.3. The stability estimates for the inverse
Prony mapping are reproduced in Subsection 4.4. The formulation of the final
estimate and its proof using the above steps are presented in Subsection 4.5.

4.3 The discrete Turan-Nazarov inequality

Let I = [0, R(S)] be the minimal interval containing S. Let N ∈ N and
λ ∈ R+ be fixed. We recall that the metric span ωN,λ(S) was defined as
max {0, supε>0 ε[M(ε, S)−M(N,λ,R(S)]}, where M(N,λ,R) = N2−1+bλRπ c.
We shall use the following special case of the main result of [11]:
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Theorem 4.1. Let H(s) =
∑N

j=1 aje
λjs be an exponential polynomial, where

aj ∈ C, λj = iφj , φj ∈ R, λ = max j=1,...,N |φj |. Let S, I be as above, with
ωN,λ(S) > 0. Then we have

sup
I
|H(s)| ≤

(
316R(S)

ωN,λ(S)

)N
· sup
S
|H(s)|. (4.3)

Proof: The proof is completely similar to the proof of Theorem 1.3 of [11].
The only difference is that as the bound for the number of zeroes of |H(z)|2
(which is also an exponential polynomial with purely imaginary exponents, of
the degree at most N2, having the maximal absolute value of the exponents at
most 2λ) we use Langer’s lemma (Lemma 1.3 in [16]). The constant 316 in (4.3)
appears in Theorem 1.5 of [16], which concerns the case of purely imaginary
exponents. Notice that the result of Theorem 4.1 does not depend at all on the
minimal distance between the exponents of H, which is crucial in the rest of our
estimates, and does not imply any bound on the amplitudes aj of H. �

4.4 Robustness estimates of inverse Prony mapping

Let x1, . . . , xN be pairwise distinct complex numbers, and let a1, . . . , aN be
nonzero complex numbers. In [7] we introduced the “Prony map”, P : C2N →
C2N , defined by

P(x1, . . . , xN , a1, . . . , aN ) = (m0, . . . ,m2N−1), mk =
N∑
j=1

ajx
k
j .

This mapping can be considered as the sampling operator for the exponential
polynomial H(s) =

∑N
j=1 ajx

s
j on the integer points s ∈ {0, 1, . . . , 2N − 1}. In

[7] we provided local perturbation estimates for P, as follows.

Theorem 4.2. Let x1, . . . , xN be pairwise distinct complex numbers, and let
a1, . . . , aN be nonzero complex numbers. Let x = (m0, . . . ,m2N−1) be the image
of the point (x1, . . . , xN , a1, . . . , aN ) under the Prony map P. Let δ > 0 be
sufficiently small, so that the inverse map P−1 is defined in the δ-neighborhood
U of x. Let x̃ be some point in this neighborhood:

x̃ = (m0 + δ0, . . . ,m2N−1 + δ2N−1), |δi| < δ.

Then the image of x̃ under P−1 satisfies

|aj − ãj | 6 C(x1, . . . , xN )δ,

|xj − x̃j | 6 C(x1, . . . , xN )|aj |−1δ,
(4.4)

where C(x1, . . . , xN ) depends only on the configuration of the nodes x1, . . . , xN .



Accuracy of Algebraic Fourier Reconstruction for Shifts of Several Signals 13

In fact, as we show in [3], in the case that x1, . . . , xN belong to the unit circle,
the constant C can be bounded from above by

C 6 2 ·
(

2

Λ

)2N

, (4.5)

where Λ = min i<j |xi − xj |. As for the the size δ of the neighborhood U of the
point x = (m0, . . . ,m2N−1), where the inverse map P−1 is defined, its explicit
determination is not straightforward, since the geometry of the Prony map,
as well as its singularities, are rather complicated. In [25, 8] we have started
algebraic-geometric investigation of the Prony map, and the results there provide
some explicit information on δ.

4.5 Accuracy of least squares sampling

The following is our main result on the least square sampling of H on S:

Theorem 4.3. Let H(s) =
∑N

j=1 aje
ıφjs be an a-priori unknown exponential

polynomial satisfying max |φj | ≤ λ, min |φi − φj | ≥ ∆ for some fixed λ,∆. Let
there be given the noisy samples h(s) of H(s) on a finite set S = {s1, . . . , sn} ⊂
R, with the noise bounded by δ, i.e. |h(s`) −H(s`)| ≤ δ, ` = 1, . . . , n. Assume
that ω(S) := ω2N,λ(S) > 0. Then, for sufficiently small δ, the amplitudes ãj and
the frequencies φ̃j of the least square fitting exponential polynomial H̃(s) satisfy,
for j = 1, . . . , N, the following inequalities:

|aj − ãj | ≤ 2
√

2n ·
(

632R(S)

ρω(S)

)2N

· δ, (4.6)

|φj − φ̃j | ≤ 2
√

2n |aj |−1 ·
(

632R(S)

ρω(S)

)2N

· δ, (4.7)

where ρ = 3R(S)∆
2πN2(N+1)

for λR(S) ≤ πN , and ρ = 2∆
λN(N+1) otherwise. In par-

ticular, in the case of zero noise, the least square reconstruction of H̃(s) on S,
under the constraints as above, is unique, up to a transposition of the indices.

Proof: First of all, let us establish the following easy bound:

Lemma 4.1. For s ∈ S we have |H̃(s)−H(s)| ≤
√

2nδ.

Proof: Indeed, the quadratic deviation σ(H,h) of H from h on S does not
exceed nδ2, where n, as above, denotes the number of elements in S. Since
H̃(s) is the exponential polynomial of the least square deviation from h, we
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have σ(H̃, h) ≤ nδ2, which directly implies σ(H̃,H) ≤ 2nδ2 and hence |H̃(s)−
H(s)| ≤

√
2nδ, for each s ∈ S. �

Now we get directly the following bound:

Corollary 4.1. For H,S and I = [0, R(S)] the minimal interval containing S
we have

sup
I
|H̃(s)−H(s)| ≤

(
316R(S)

ω2N,λ(S)

)2N

·
√

2nδ. (4.8)

Proof: We notice that by Lemma 4.1 we have supS |H̃(s) − H(s)| ≤
√

2nδ.
Substituting into Theorem 4.1 (which is applied to the exponential polynomial
H(s)−H̃(s) of degree 2N with purely imaginary exponents, bounded in absolute
value by λ), we get the required bound. �

The bound of Corollary 4.1 does not imply by itself any bound on the amplitudes
aj . They may tend to infinity, as the exponents collide, following the pattern
of divided finite differences (see [25, 8]). So the continuation of the proof in-
corporates the a priori known lower bound ∆ on the differences between the
exponents of H. We get estimates of the reconstruction accuracy of aj and λj
via solving an appropriate auxiliary Prony system, and applying Theorem 4.2
above.

Let I = [0, R(S)] be as above. Fix certain s0 ∈ (0, R
2N ] and consider the points

s0, 2s0, . . . , (2N)s0 ∈ I. We denote νk = H(ks0), k = 0, 1, . . . , the values of H
at the points ks0. We get

H(ks0) =
N∑
j=1

aje
`jks0 =

N∑
j=1

ajx
k
j = νk, k ∈ Z, (4.9)

where xj = eλjs0 = eiφjs0 . So for each choice of s0 ∈ (0, R
2N ] we obtain a Prony

system

N∑
j=1

ajx
k
j = νk, k = 0, . . . , 2N − 1, (4.10)

which is satisfied by aj and xj = eiφjs0 , j = 1, . . . , N . It is well known that
if xi 6= xj for i 6= j, then the solution aj , xj = eiφjs0 , j = 1, . . . , N of (4.10)
is unique, up to a permutation of the indices. Moreover, the robustness of the
solutions of (4.10) with respect to the perturbations of the right-hand side, is
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determined by the mutual distances |xi−xj |, i 6= j (see [7, 6] and Subsection 4.4).
So our next goal is to choose s0 ∈ (0, R

2N ] in such a way that Λ = min i 6=j |xi−xj |
be sufficiently large. To achieve this goal we have to find s0 such that all the
angles ∆i,js0 are separated from the integer multiples 2πm, m ∈ Z, where
∆i,j = |φj − φj |.

An easy example shows that there are “bad” choices of s0: assume that the
frequencies φj in H are of the form φj = s ·2πmj , with s ∈ R, mj ∈ Z, mi 6= mj

for i 6= j. Then for s0 = 1
s we have x1 = x2 = . . . = xN . The next lemma shows

that most choices of s0 are good, assuming that ∆ = min i<j∆i,j is not zero.

Lemma 4.2. Let R̄, q1, . . . qr ∈ R+ be given, with q = min q`, Q = max q`
There exists s0 ∈ (0, R̄] such that all the angles q`s0, ` = 1 . . . , r, are separated

from the integer multiples 2πm, m ∈ Z by at least h̄, defined as h̄ = R̄q
4r ≤

π
4 for

QR̄ ≤ π, and as h̄ = πq
3rQ ≤

π
3 for QR̄ > π.

Proof: By assumptions we have q` ≤ Q. Hence for each ` = 1, . . . , r the interval

ql · (0, R̄] contains at most QR̄
2π + 1 integer multiples 2πm. For h > 0 let U(h)

denote the h-neighborhood of these points. Denote by µ1 the standard Lebesgue

measure on R. We have µ1(U(h)) ≤ h[QR̄π + 2]. Now let V`(h) denote the set of

those s ∈ (0, R̄] for which q`s ∈ U(h). We conclude that µ1(V`(h)(h)) ≤ h
q`

[QR̄π +

2] ≤ h
q [QR̄π + 2]. Finally, denoting V (h) the set of the points s ∈ (0, R̄] for which

q`s ∈ U(h) for at least one index ` = 1, . . . , r, we get µ1(V (h)) ≤ rh
q [QR̄π + 2]. If

for some h we have µ1(V (h)) < |(0, R̄]| = R̄, then there exists s0 ∈ (0, R̄] such
that all the angles qls0, ` = 1, . . . , r, are separated from the integer multiples
2πm, m ∈ Z at least by h.

Now we consider two cases: QR̄ ≤ π and QR̄ > π. In the first case µ1(V (h)) ≤
3rh
q , and the inequality µ1(V (h)) ≤ R̄ is valid with h = h̄ = R̄q

4r ≤
π
4 . In

the second case µ1(V (h)) ≤ 3rh
q
QR̄
π , and the inequality µ1(V (h)) ≤ R̄ is valid,

starting with h = h̄ = πq
3rQ ≤

π
3 . This completes the proof of the lemma. �

In our case of the angles ∆i,j and s0 ∈ (0, R
2N ] we have, respectively, R̄ = R

2N , r =
N(N+1)

2 , Q = 2λ, q = ∆. Applying Lemma 4.2 we obtain the following result:

Corollary 4.2. There exists s0 ∈ (0, R
2N ] such that all the angles ∆i,j · s0, 1 <

i < j ≤ N are separated from the integer multiples 2πm, m ∈ Z by at least
h̄, defined as h̄ = R∆

2N2(N+1)
≤ π

4 for λR ≤ πN , and as h̄ = 2π∆
3λN(N+1) ≤

π
3

for λR > πN . Accordingly, the minimal distance min |xi − xj |, i 6= j, between
the points xj = eiφjs0 , j = 1, . . . , N in (4.10) is at least ρ = 3

π h̄, which is
ρ = 3R∆

2πN2(N+1)
for λR ≤ πN , and ρ = 2∆

λN(N+1) for λR > πN .
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Proof: The result on the separation of the angles follows directly from Lemma
4.2. The result for the distances follows from the fact that always h̄ ≤ π

3 . �

Now we can complete the proof of Theorem 4.3. We fix s0 whose existence is
guaranteed by Lemma 4.2, and form the Prony system, which is satisfied by the
parameters of H:

N∑
j=1

ajx
k
j = νk, k = 0, . . . , 2N − 1, xj = eλjs0, (4.11)

with νk = H(ks0) the values of H at the points ks0, k = 0, . . . , 2N − 1. Notice
that these values are not exactly known. However, by Corollary 4.1 we know
that

sup
J
|H̃(s)−H(s)| ≤

(
316R

ω2N,λ(S)

)2N

·
√

2nδ, (4.12)

where H̃(s) =
∑N

j=1 ãje
λ̃js is the polynomial of the least square approximation

on S. In particular, denoting ν̃k = H̃(ks0), k = 0, . . . , 2N − 1, the values of H̃

at the points ks0, we get |ν̃k − νk| ≤
(

316R
ω2N,λ(S)

)2N
·
√

2nδ.

Now the parameters ãj , λ̃j of H̃ satisfy the Prony system

N∑
j=1

ãj x̃
k
j = ν̃k, k = 0, . . . , 2N − 1, x̃j = eλ̃js0. (4.13)

Finally we apply Theorem 4.2 to Prony system (4.11) and its perturbation (4.13),
taking into account the expression (4.5) for the constant C in Theorem 4.2.
Noticing that the distances between the nodes xj of the unperturbed Prony
system (4.11) are bounded from below by ρ via Corollary 4.2, we arrive at (4.6)
and (4.7). Uniqueness of reconstruction for δ = 0 follows directly from (4.6) and
(4.7). This completes the proof of Theorem 4.3. �

4.6 Estimating ωN,λ(S): some examples

The metric span ωN,λ(S) can be explicitly computed in many important cases.
In particular, we have the following simple result:
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Proposition 4.1. Let N,λ be fixed. Assume that a subset S ⊂ R with R(S) = R
contains M(N,λ,R) + 1 points, and let η be the minimal distance between the
neighboring points in S. Then ωN,λ(S) = η.

Proof: For ε ≥ η we have M(ε, S)−M(N,λ,R) ≤ 0. For ε < η this difference
is 1. Hence the supremum in Definition 2.1 is achieved as ε tends to ρ from the
left. �

Corollary 4.3. Let N,λ be fixed. Assume that a subset S ⊂ R contains
M(N,λ,R) + 1 points. Then ωN,λ(S) ≤ R

M(N,λ,R) , and this value is achieved

only for S consisting of M(N,λ,R)+1 points at the distance R
M(N,λ,R) one from

another.

Proof: For the equidistant configuration the minimal distance η between the
neighboring points in S is R

M(N,λ,R) . Otherwise η is strictly smaller. �.

Now let us consider equidistant configurations with a larger number of sampling
points.

Proposition 4.2. Let N,λ be fixed. Assume that a subset S ⊂ R contains
m+ 1 ≥M(N,λ,R) + 1 points at the distance R

m from one another. Then

ωN,λ(S) =

(
R

m

)
[m+ 1−M(N,λ,R)]. (4.14)

Proof: For the equidistant configuration S the minimal distance η between
the neighboring points in S is R

m . On the other hand, for each ε < η we have
M(ε, S) = m + 1, while for kη ≤ ε ≤ (k + 1)η, k = 1, 2, ..., we have M(ε, S) =
m+1
k .An easy computation then shows that the supremum of ε[M(ε, S)−M(N,λ,R)]

is achieved for ε tending to η from the left, and it is equal to (Rm)[m + 1 −
M(N,λ,R)]. �

Remark 4.1. As substituted into the expression of Theorem 4.3, the results
above imply the corresponding bound for the accuracy of the least square re-
construction on S. In particular, the expression (4.14) above seems to pro-
vide a non-trivial recommendation for the choice of the number of equidistant
sample points inside a given interval I. Indeed, for m = M(N,λ,R) we get
ω(S) = R

M(N,λ,R) . But for m = 2M(N,λ,R) we get

ω(S) =
R

2M(N,λ,R)

[
M(N,λ,R) + 1

]
,
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which is approximately R
2 for large M(N,λ,R) - improvement by M

2 times.
For m tending to infinity ω(S) tends to R, so we do not achieve any essential
improvement any more. Thus the recommendation may be to take m of order
KMd with K between, say 2 and 5.

Remark 4.2. Combining Theorem 4.3 and Proposition 4.1 we can also predict
the rate of the degeneration of the reconstruction problem on S as two points of
S collide. By the same method we can analyse also the cases of more complicated
collisions between the sampling points.

5 Numerical simulations

In this section we present results of initial numerical experiments. Our goal in
these very preliminary simulations has been to numerically investigate the qual-
itative dependence of the reconstruction error on the geometry of the sampling
set S. Our results below are indeed qualitatively consistent with the bounds of
Theorem 4.3.

In all the experiments presented in Figures 1 and 2 below, we have fixed an a-
priori randomly chosen exponential polynomial H(s), and modified the sampling
set S according to the description of each experiment below. The sampling values
{H(si), si ∈ S} have been perturbed by the (random) amount ε1 ∼ 10−8.
Subsequently, the least-squares approximation to H(s) has been obtained by
the standard sequential quadratic programming algorithm (implemented by the
function sqp in GNU Octave environment). The initial values for the algorithm
have been taken to be equal to the true values perturbed by the (random)
amount ε2, specified in each experiment below. We have plotted the recovery
error for one of the frequencies (specifically, |∆φ2|).

In the first experiment we changed the distance d between s2, . . . , sn−1, while
keeping the endpoints s1, sn (and thereby the value of R) fixed. The number of
points was chosen to be exactly n = M(2N,λ,R) + 1. According to Proposition
4.1, in this case we have ω(S) = d. As can be seen in Figure 1, the error is
roughly proportional to 1

ω(S) .

In the second experiment, we have kept the endpoints of the set S fixed (0 and
R), while increasing the number n of (equispaced) points in S. According to
Figure 2, a significant improvement in accuracy appears when the number of
samples passes M(2N,λ,R) which is 15 in this case.
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Figure 1: In this experiment, we changed the mutual distance d between the
subsequent points of S, while keeping the two endpoints fixed. ε2 = 10−5, λ =
1, R = 60, N = 2. The size of S is n = 35. The error is plotted versus the
value of d in red. For comparison, the value 1

d is plotted in blue.
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Figure 2: In this experiment, we increased n, the number of points in S, keeping
the range (i.e. the value of R) fixed. ε2 = 10−2, λ = 0.1, R = 10, N = 2. Here
M(2N,λ,R) = 15. The error is plotted versus the value of n.



20 D. BATENKOV AND N. SARIG AND Y. YOMDIN

References

[1] B. Adcock, M. Gataric, and A.C. Hansen On stable reconstructions from
univariate nonuniform Fourier measurements. Preprint. Arxiv: 1310.7820

[2] D. Batenkov. Complete Algebraic Reconstruction of Piecewise-Smooth
Functions from Fourier Data. Preprint. Arxiv:1211.0680.

[3] D. Batenkov. Decimated Generalized Prony systems. Preprint.
Arxiv:1308.0753.

[4] D. Batenkov, N. Sarig, and Y. Yomdin. An “algebraic” reconstruction of
piecewise-smooth functions from integral measurements. Functional Differ-
ential Equations, 19(1-2):9–26, 2012.

[5] D. Batenkov, N. Sarig, and Y. Yomdin. Decoupling of Reconstruction Sys-
tems for Shifts of Several Signals. Proc. of Sampling Theory and Applica-
tions (SAMPTA), 2013.

[6] D. Batenkov and Y. Yomdin. Algebraic reconstruction of piecewise-smooth
functions from Fourier data. Proc. of Sampling Theory and Applications
(SAMPTA), 2011.

[7] D. Batenkov and Y. Yomdin. On the accuracy of solving confluent Prony
systems. SIAM J. Appl. Math., 73(1):134–154, 2013.

[8] D. Batenkov and Y. Yomdin. Geometry and Singularities of the Prony
Mapping. To appear in Proceedings of 12th International Workshop on
Real and Complex Singularities, 2013.

[9] A. Beurling. Balayage of Fourier-Stiltjes Transforms. The collected Works
of Arne Beurling, Vol.2, Harmonic Analysis. Birkhauser, Boston, 1989.

[10] P.L. Dragotti, M. Vetterli and T. Blu. Sampling Moments and Recon-
structing Signals of Finite Rate of Innovation: Shannon Meets Strang-Fix,
IEEE Transactions on Signal Processing, Vol. 55, Nr. 5, Part 1, pp. 1741-
1757, 2007.

[11] O. Friedland and Y. Yomdin. An observation on Turán-Nazarov inequality.
To appear.

[12] K. Gedalyahu, R. Tur, and Y.C. Eldar. Multichannel sampling of pulse
streams at the rate of innovation. IEEE Transactions on Signal Processing,
59(4):1491–1504, 2011.

[13] Liviu Gr Ixaru and Guido Vanden Berghe. Exponential Fitting. Springer,
May 2004.



Accuracy of Algebraic Fourier Reconstruction for Shifts of Several Signals 21

[14] H. Landau. Necessary density conditions for sampling and interpolation of
certain entire functions. Acta Mathematica, 117(1):37–52, 1967.

[15] F. Marvasti. Nonuniform sampling: theory and practice. Springer, 2001.

[16] F.L. Nazarov. Local estimates of exponential polynomials and their appli-
cations to inequalities of uncertainty principle type. St Petersburg Mathe-
matical Journal, 5(4):663–718, 1994.

[17] A. Olevski, A. Ulanovski. Local estimates of exponential polynomials and
their applications to inequalities of uncertainty principle type. St Petersburg
Mathematical Journal, 5(4):663–718, 1994.

[18] A. Olevski, A. Ulanovski. Near critical density irregular sampling in
Bernstein spaces. Mathematisches Forschungsinstitut Oberwolfach gGmbH,
Oberwolfach Preprints (OWP) 2013-16, ISSN 1864-7596.

[19] Victor Pereyra and Godela Scherer. Exponential Data Fitting and Its Ap-
plications. Bentham Science Publishers, January 2010.

[20] T. Peter, D. Potts, and M. Tasche. Nonlinear approximation by sums
of exponentials and translates. SIAM Journal on Scientific Computing,
33(4):1920, 2011.

[21] B.D. Rao and K.S. Arun. Model based processing of signals: A state space
approach. Proceedings of the IEEE, 80(2):283–309, 1992.

[22] N. Sarig and Y. Yomdin. Signal Acquisition from Measurements via Non-
Linear Models. Mathematical Reports of the Academy of Science of the
Royal Society of Canada, 29(4):97–114, 2008.

[23] N. Sarig. Algebraic reconstruction of ”shift-generated” signals from integral
measurements. PhD thesis, Weizmann Institute of Science, 2010.

[24] P. Stoica and R.L. Moses. Spectral analysis of signals. Pearson/Prentice
Hall, 2005.

[25] Y. Yomdin. Singularities in algebraic data acquisition. Real and Complex
Singularities (M. Manoel, MC Romero Fuster, CTC Wall, eds.), London
Mathematical Society Lecture Notes, 380:378–396, 2010.


	1 Introduction
	2 Robustness of Fourier Decoupling
	3 An example
	4 Sampling of Exponential Polynomials
	4.1 Problem definition and main assumptions
	4.2 Reconstruction by least squares
	4.3 The discrete Turan-Nazarov inequality
	4.4 Robustness estimates of inverse Prony mapping
	4.5 Accuracy of least squares sampling
	4.6 Estimating N,(S): some examples

	5 Numerical simulations

